首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frazier R  Wai CM 《Talanta》1992,39(3):211-214
The selectivities during solvent extraction of lanthanoids with macrocycles can be modified with complexonates in the aqueous phase. In the case of solvent extraction of lanthanoids with 18-crown-6 and trichloroacetic acid (TCA), addition of EDTA to the aqueous phase enhances the selectivities of lanthanoids by 3-7 times compared to those without the complexonate. This is due to the fact that the stability of lanthanoid-EDTA complexes increases in the opposite direction to the crown-TCA complexes across the lanthanoid series. The selectivities observed in this system are among the largest reported for the light lanthanoids. The effect of the complexonate on lanthanoid extraction can be explained by a simple model presented in this paper.  相似文献   

2.
Extraction behaviour of lanthanoid/III/ has been investigated by using 18-crown-6/CR/ as a neutral microcyclic ligand, trichloroacetate/TCA/ as an anionic counter ion, and 1,2-dichloroethane as an organic solvent. From the equilibrium studies, the extractable complex such as LnCR3+ was found for La/III/, Ce/III/, Pr/III/, Nd/III/, Sm/III/, and Eu/III/ and also the formation of Ln/CR/ 2 3+ complexes was suggested for Tb/III/, Tm/III/, and Lu/III/. The extractability of lanthanoid/III/ steeply decreased with increase in the atomic number. This order of extractability was a reverse trend compared with that in many other extraction systems reported so far. Very high separation factors especially among light lanthanoid/III/ were observed.  相似文献   

3.
Mohite BS  Khopkar SM 《Talanta》1985,32(7):565-567
Rubidium is extracted quantitatively at pH 3.0-7.0 by 0.01M dicyclohexano-18-crown-6 in methylene chloride from 0.01M picric acid, stripped with 2M nitric acid and determined by flame photometry or atomic-absorption spectrometry. It can be separated from the most alkali and alkaline-earth metals, but the tolerance levels for potassium, ammonium and barium are rather low. The common anions, including those of some organic acids, are tolerated in fairly high amounts. The method has been applied to analysis of chloride schist rock and lepidolite for rubidium. The analysis takes an hour.  相似文献   

4.
The coextraction of water with benzo-15-crown-5 (B1SC5), benzo-18-crown-6 (B18C6) and the B18C6-K+ complex into seven low-polar solvents, i.e., carbon tetrachloride (CTC), chloroform (CF), dichloromethane (DCM), 1,2-dichloroethane (1,2-DCE), benzene (BZ), chlorobenzene (CB) and o-dichlorobenzene (o-DCB), has been investigated. The mean hydration number, nH2O, of these solutes in the water-saturated organic solvents was determined. There is a trend that the nH2O values for any solutes increase with increasing the water concentration in the solvents. Those of B18C6 and B15C5 converge at almost 0.8 for B18C6 and 0.4 - 0.5 for B15C5 in the solvents with the relatively high water concentration, i.e., CF, 1,2-DCE, DCM, and nitorobenzene (NB). The nH2O value of B15C5 is about one-half of that of B18C6 for a given organic solvent. The dominant species of the B18C6-K+ complex in these solvents is non-hydrated. From these results, the hydration equilibrium constants, KH2O, in the organic solvents were estimated.  相似文献   

5.
The synergistic solvent extraction of 13 lanthanides with mixtures of 8-hydroxyquinoline (HQ) and the crown ethers (S) 18-crown-6 (18C6) or benzo-18-crown-6 (B18C6) in 1,2-dichloroethane has been studied. The composition of the extracted species has been determined as LnQ3 · S. The values of the equilibrium constant and separation factor have been calculated. Here, the effect of the synergistic agent (18C6 or B18C6) on the extraction process is discussed.  相似文献   

6.
Synergistic extraction of uranyl ion with acylpyrazolones such as 1-phenyl-3-methyl-4-trifluoroacetylpyrazolone-5 (HPMTFP, pKa=2.7), 1-phenyl-3-methyl-4-acetylpyrazolone (HPMAP, pKa=3.8) or 1-phenyl-3-methyl-4-benzoylpyrazolone-5 (HPMBP, pKa=4.2) in combination with dicyclohexano-18-crown-6 (DC-18-C6) has been studied at various fixed temperatures. The results indicate that the equilibrium constants of the organic phase addition reaction, log Ks, at 30°C are almost constant, viz., 2.72, 2.69 and 2.84, respectively, for the above three systems. The similarity and low log Ks values with DC-18-C6 as compared with TBP systems with these pyrazolones appears to arise due to the limitation to the approach of the large crown ether molecule in bonding with the uranyl chelate. This is in contrast to the fact that the relative basicities of the two donors (equilibrium constant for nitric acid uptake) are comparable. Thermodynamic data for chelate extraction with HPMTFP evaluated by the temperature coefficient method indicates that a hydrated chelate is extracted into the organic phase. Also, the organic phase addition reaction with DC-18-C6 is stabilized by exothermic enthalpy change, the entropy change counteracting in all the three cases.  相似文献   

7.
Abstract

Solvent extraction of lead halides with 18-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6, cis-syn-cis and cis-anti-cis isomers) in chloroform was studied, and the extraction constants corrected for side reactions and ionic strength effects were obtained. The compounds of the same composition as those being extracted were also isolated in crystal form. The molecular structure of the [Pb(18C6)I2] complex has been determined. Crystals are monoclinic, P21/n, a = 11.237(2), b = 10.992(2), c = 8.139(2)Å, β = 97.32(3)°, V = 997.1(7)Å3, Dcalc = 2.416(2)gcm?3, Z = 2 for the composition C12H24O6PbI2. The final R-factor is 0.043 for 558 unique reflections. The lead atom is coordinated to six oxygen atoms of the crown ether and two iodine atoms forming a hexagonal bipyramidal coordination polyhedron. The 18C6 molecule and the two halogen atoms form a hydrophobic coating for the lead atom which may be assumed to be the main reason of high extraction constants of the iodine complexes. For 10-coordinate lead ion (bidentate counter ions) the cis-syn-cis isomer of DC18C6 appears to be the best extraction reagent, while for 8-coordinate lead ion (monodentate halide anion) no difference between isomers was observed.  相似文献   

8.
Thorium was quantitatively extracted from 0.04M picric acid with 0.065M of 18-crown-6 at pH 2.0–3.5. It was stripped from organic phase with 0.5M nitric acid and was determined spectrophotometrically at 655 nm as its Arsenazo-III complex. Thorium was separated from mixture containing cerium, uranium, zirconium, hafnium, yttrium and lead in complex mixtures. The method was extended for the analysis of thorium in monazite.  相似文献   

9.
Heat effects of the dissolution of 18-crown-6 ether (18C6) over a wide range of compositions of mixed methanol-acetonitrile solvents are determined via calorimetry at 298.15 K. It is found that passing from methanol to acetonitrile to x AN = 0.6 mole fraction is accompanied by a sharp increase in the exothermicity of 18C6 solvation. It is concluded that a further increase in the aprotic component of a binary mixture leads to no appreciable changes in the enthalpy of solvation of the macrocycle.  相似文献   

10.
The complex formation of crown ethers with cations in nonpolar medium with small amounts of polar solvents added has been studied. The goal has been to get deeper insight into the influence of solvation (hydration) of the salts for the formation of complexes with the macrocyclic ligand 18-crown-6 (18C6). A linear dependence of the reaction enthalpy for complex formation between 18C6 and alkali metal cations in chloroform in the presence of water or methanol has been observed. The presence of acetonitrile or acetone has had no influence upon the measured reaction enthalpies. The influence of methanol on the complex formation between 18C6 and alkali metal cations in chloroform is weaker than in the case of water. This underpins the selective solvation of alkali cations in chloroform after the addition of small amounts of water or methanol. The experiments have been performed using calorimetric titrations.  相似文献   

11.
The extraction of La(III), Gd(III), and Lu(III) with 18-crown-6 (18C6) has been studied using pentadecafluorooctanoate (PDFO) as a counter anion. Very high extractability of La(III) was observed in various organic solvents such as benzene, chloroform, 1,2-dichloroethane, and nitrobenzene. The predominant species extracted into benzene was found to be Ln(PDFO)3 (18C6), and the extraction constants (K ex,s1 =[Ln(PDFO)3 (18C6)]org/[Ln3+][PDFO]3[18C6]org) were 1013.12 for La(III), 109.74 for Gd(III), and 109.67 for Lu(III). These values are 1010 times higher than those in the trichloroacetate-18C6 system reported previously. The present PDFO-18C6 system was superior to the picrate- and hexafluoroacetylacetonate-18C6 system for the separation efficiency of light lanthanides(III).  相似文献   

12.
The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from logK ° = 1.10 to logK ° = 2.44, and an increase in the exothermicity of the reaction of its formation, from ?5.9 to ?16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents’ solvation characteristics reveals that the increase in the reaction’s exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ? [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (Δtr G °([3Gly18C6])-Δtr G °(3Gly)).  相似文献   

13.
Zirconium was quantitatively extracted with 2.5 × 10?2 M dicyclohexyl-18-crown-6 in dichloromethane from 8.5 M hydrochloric acid. It was stripped with 0.5 M hydrochloric acid and was determined spectrophotometrically as its complex with Arsenazo III. Hafnium was not extracted under these conditions, but from the residual aqueous phase it was extracted with 7.0 × 10?2 M dicyclohexyl-18-crown-6 in dichloromethane from 9.0 M hydrochloric acid. It was stripped with 0.1 M perchloric acid and determined spectrophotometrically at 540 nm as its complex with xylenol orange. The separation of zirconium and hafnium from other metals is also described.  相似文献   

14.
周雅仙  张宪新 《化学学报》1988,46(5):496-499
本文用斜率法、饱和法以及通过与萃取合物相对应的冠醚配合物晶体的制备及其性质研究, 探讨了In^3^+的萃取机理, 测定并计算了表观萃取平衡常数, 将此萃取体系应用于铟和某些体系应用于铟和某些金属离子的萃取分离, 亦获得较好的结果.  相似文献   

15.
The formation of 18-crown-6 ether (18C6) complexes with D,L-alanine (Ala) in mixed wateracetone solvents with 0.0, 0.08, 0.17, 0.22, and 0.30 mole fractions of acetone (T = 298.15 K) was investigated by means of calorimetry. Thermodynamic characteristics of the reaction of the molecular [Ala18C6] complex formation (Δr G°, Δr H°, and TΔr S°) were calculated on the basis of calorimetric data. Analysis of solvation contributions of reagents into the enthalpy of the [Ala18C6] formation reaction showed that the changes in the reaction energy when the solvent composition is varied are determined by the changes in the solvate state of 18C6.  相似文献   

16.
The complexation reaction between UO2 2+ cation with macrocyclic ligand, 18-crown-6 (18C6), was studied in acetonitrile–methanol (AN–MeOH), nitromethane–methanol (NM–MeOH) and propylencarbonate–ethanol (PC–EtOH) binary mixed systems at 25 °C. In addition, the complexation process between UO2 2+ cation with diaza-18-crown-6 (DA18C6) was studied in acetonitrile–methanol (AN–MeOH), acetonitrile–ethanol (AN–EtOH), acetonitrile–ethylacetate (AN–EtOAc), methanol–water (MeOH–H2O), ethanol–water (EtOH–H2O), acetonitrile–water (AN–H2O), dimethylformamide–methanol (DMF–MeOH), dimethylformamide–ethanol (DMF–EtOH), and dimethylformamide–ethylacetate (DMF–EtOAc) binary solutions at 25 °C using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between (18C6) and (DA18C6) with UO2 2+ cation in most cases is 1:1 [M:L], but in some solvent 1:2 [M:L2] complex is formed in solutions. The values of stability constants (log Kf) of (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes which were obtained from conductometric data, show that the nature and also the composition of the solvent systems are important factors that are effective on the stability and even the stoichiometry of the complexes formed in solutions. In all cases, a non-linear relationship is observed for the changes of stability constants (log Kf) of the (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes versus the composition of the binary mixed solvents. The stability order of (18C6 · UO2 2+) complex in pure studied solvents was found to be: EtOH > AN ≈ NM > PC ≈ MeOH, but in the case of (DA18C6 · UO2 2+) complex it was : H2O > MeOH > EtOH.  相似文献   

17.
18.
Compounds of the compositions [2(18-crown-6)6(H2O)2(C2H4Cl2){Pt2+(C2H4)}(Pt2Cl10)2–], [4(18-crown-6)2(OH3)+2(OH2)2(NH3)(Pt2Cl10)2–], [(dibenzo-18-crown-6)6(H2O){Pt2+(C2H4)}(Pt2Cl10)2–], and [4(dibenzo-18-crown-6)2(OH3)+2(OH2)2(NH3)Pt2Cl10)2–] were prepared by reactions of H2PtCl6 with 18-crown-6 and dibenzo-18-crown-6.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 10, 2004, pp. 1593–1599.Original Russian Text Copyright © 2004 by Guseva, Busygina, Khasanshin, Polovnyak, Yarkova, Yusupov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

19.

Abstract  

Extraction experiments in the two-phase water/nitrobenzene system and γ-activity measurements were used to determine the stability constant of the dibenzo-18-crown-6·Ag+ complex species in nitrobenzene saturated with water. Furthermore, the structure of the resulting complex was derived by means of theoretical calculations at the density functional level.  相似文献   

20.
The title compounds were prepared by treating a methanol solution of the corresponding crown ether with an aqueous solution of aminosulfuric acid.Crystals of [benzo-18-crown-6·H2NSO2OH] suitable for X-ray crystallography were obtained by recrystallization from methanol. The crystals are orthorhombic, space groupP212121,a = 14.310(7),b = 12.516(4),c = 10.890(4) Å. Refinement led to a final conventionalR value of 0.051 for 909 reflections.Crystals of [18-crown-6·H2NSO2OH] suitable for X-ray crystallography were obtained by recrystallization from acetone. They are orthorhombic, space groupP212121,a = 17.027(6),b = 14.866(5),c = 8.345(4) Å. The structure was solved by a heavy atom method and refined to an agreement value of 0.067.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号