首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible association of photodynamic sensitization by cytochrome b6/f complex (cyt b6/f) via singlet oxygen (1O2) mechanism with photoinhibition damage to photosystem II (PS II) was studied using such subthylakoid preparations as photosystem I (PS I) particles, PS II core complex and cyt b6/f from spinach leaves. Upon exposure to bright light, PS II core complex lost photosynthetic electron transport activity to a certain extent, whose-spectral dependence implied that pheophytin a is likely involved in photoinactivation of PS II core complex in itself. The presence of PS I particles exerted virtually no effect on PS II core photoinactivation. However, the inclusion of cyt b6/f in samples resulted in a marked exacerbation of the photoinactivation, particularly in UV-A and blue light. Such effect of cyt b6/f was suppressed by azide and enhanced by the medium deuteration. Photogeneration of 1O2 from cyt b6/f was confirmed by ESR and spectrophotometry, chemically trapping 1O2. Action spectra for both 1O2 photoproduction and PS II core photoinactivation by cyt b6/f bore a close resemblance to each other, seemingly carrying the absorption characteristics of the Rieske Fe-S protein. A complex deficient in the Rieske protein prepared from intact cyt b6/f showed virtually no generation of 1O2 in light, whereas an efficient photoformation of 1O2 was seen in the Rieske protein preparation. The results suggest that cyt b6/f, rather specifically the Rieske center, may play a prominent role in photoinhibition processes through type II photosensitization in thylakoids.  相似文献   

2.
Abstract— The possible association of photodynamic sensitization with photoinhibition damage to the photosystem II complex (PS II) has been investigated using isolated intact thylakoids from pea leaves. For this study singlet oxygen (1O2), photoproduced by endogenous chromophores that are independent of the function of PS II, was assumed to be the major reactive intermediate involved in the photoinhibition process. When thylakoid samples preincubated with rose bengal were subjected to exposure to relatively weak green light (500–600 nm) under aerobic conditions, PS II was severely damaged. The pattern of the rose bengal-sensitized inhibition of PS II was similar to that of high light-induced damage to PS II: (1) the secondary quinone (QB)-dependent electron transfer through PS II is inactivated much faster than the QB-independent electron flow, (2) PS II activity is lost prior to degradation of the D1 protein, (3) diuron, an herbicide that binds to the QB domain on the D1 protein, prevents D1 degradation, and (4) PS II is damaged to a greater extent by the deuteration of thylakoid suspensions but to a lesser extent by the presence of histidine. Furthermore, it was observed that destroying thylakoid Fe-S centers resulted in a marked reduction of high light-induced PS II damage. These results may suggest that the primary processes of photoinhibition are mediated by 1O2 and that Fe-S centers, which are located in some membrane components, but not in PS II, play an important role in photogenerating the activated oxygen immediately responsible for the initiation of photodamage to PS II.  相似文献   

3.
Abstract— A comparative study was carried out on the in situ susceptibilities to photoinactivation of the photosystem I (PS I) and II (PS II) complexes of spinach thylakoids treated with efficient type II sensitizers. While the presence of the exogenous sensitizers caused a substantial increase in the extent of photoinactivation of whole chain electron transport, it did not affect PS I activity of thylakoids in light but exerted an enhanced photoinactivating effect only on PS II. The measurements of the action spectrum for the inhibition of PS II activity of the sensitizer-incorporated thylakoids and that for the generation of singlet oxygen (1O2) from them revealed that photosensitized inactivation of PS II is directly related to the photoproduction of 1O2 in thylakoid membranes. The results obtained in the present work clearly demonstrate an exceptional sensitivity of PS II to 1O2, providing circumstantial evidence that high light-induced damage to PS II may result from photosensitization reactions mediated by 1O2, which is not necessarily produced within the PS II complex.  相似文献   

4.
An earlier mechanistic phase of iron toxicity in photosynthetic cells was interpreted in terms of enhanced photodynamic action by the cytochrome b6/f complex (Cyt b6/f) via singlet oxygen (1O2) on the photosystem II complex (PS II). Iron excess was induced in hydroponically cultured pea (Pisum sativum L.) plants, and its effect on the function of PS II in vivo as well as in vitro was studied under high-irradiance conditions. Iron excess in plants gave rise to a significant increase in Cyt b6/f content of thylakoids. It appeared that the larger the content of Cyt b6/f, the more susceptible PS II was to photoinhibition, and the higher the rate of 1O2 photoproduction in thylakoids was. The action spectrum for degradation of the D1 protein in thylakoids revealed that photosensitization by nonporphyrin chromophore(s) was apparently associated with near UV to blue light-induced deterioration of PS II. The results are pertinent to the concept that photooxidative damage to PS 11, exacerbated by iron accumulation in thylakoid membranes in the form of Cyt b6/f, is involved in the mechanism of iron toxicity in leaf cells.  相似文献   

5.
The kinetics of chlorophyll photobleaching were followed in whole thylakoid membranes as well as in photosystem I and photosystem II submembrane fractions. The onset of photobleaching was characterized by a slow rate which indicated the presence of energy traps implicated in the photoprotection of the bulk pigments. The pigments in photosystem I submembrane fractions bleached at a faster rate than those in photosystem II counterparts, the latter being more sensitive towards photoinhibition. An analysis of the pigment-protein complexes isolated from whole thylakoid membranes during the course of a photobleaching experiment has shown that the core-antenna complexes, including CP29, are more sensitive to illumination than the peripheral complexes. The absorption spectra of the CPI and CP29 complexes presented a blue shift of the red absorption maximum after partial photobleaching, indicative of a non-homogeneous bleaching of the holochromes in these complexes. An analysis of these data points towards the involvement of CP29 in a photoprotection mechanism at the level of photosystem II. The weaker resistance of photosystem I to photobleaching relative to photosystem II and its stronger resistance to photoinhibition is discussed in terms of an energy dissipation pathway in thylakoid membranes.  相似文献   

6.
Cyanobacteria possess different carotenoids as scavengers of reactive oxygen species. In Synechocystis PCC6803, zeaxanthin, echinenone, beta-carotene and myxoxanthophyll are synthesized. By disruption of the ketolase and hydroxylase genes, it was possible to obtain mutants devoid of either zeaxanthin, echinenone, or a combination of both carotenoids. With these mutants, their function in protecting photosynthetic electron transport under high light stress as well as chlorophyll and carotenoid degradation after initiation of singlet oxygen or radical formation was analyzed. Wild type Synechocystis is very well protected against high light-mediated photooxidation. Absence of echinenone affects photosynthetic electron transport to only a small extent. However, complete depletion of zeaxanthin together with a modification of myxoxanthophyll resulted in strong photoinhibition of overall photosynthetic electron transport as well as the photosystem II reaction. In the double mutant lacking both carotenoids the effects were additive. The light saturation curves of photosynthetic electron transport of the high light-treated mutants exhibited not only a lower saturation value but also smaller slopes. Using methylviologen or methylene blue as a radical or singlet oxygen generators, respectively, massive degradation of chlorophyll and carotenoids, indicative of photooxidative destruction of the photosynthetic apparatus, was observed, especially in the mutants devoid of zeaxanthin.  相似文献   

7.
Abstract— DNA and RNA syntheses were inhibited immediately after proflavine treated HeLa cells were irradiated with visible light (400–500 nm). The molecular mechanism for this photooxidation may be either a free radical-mediated (Type I) or singlet oxygen-mediated (Type II) reaction. Non-toxic free radical and singlet oxygen quenchers were added to cells and sensitizer before irradiation to quench the appropriate excited state intermediate. Photooxidative damage (the inhibition of incorporation of [14C]-thymidine) in this system was greatly reduced in the presence of free radical quenchers (glutathione, penicillamine) and not significantly affected by the presence of singlet oxygen quenchers (α-tocopherol, β-carotene, DABCO). This suggests that at least part of the photodynamic damage in HeLa cells is via a Type I mechanism.  相似文献   

8.
光合水氧化是地球上最重要的生化过程之一.光合放氧生物包括光系统Ⅰ(PSⅠ)和光系统Ⅱ(PSⅡ)两种类型反应中心,光系统Ⅱ反应中心能以水作为电子给体,利用光能氧化水产生质子和氧气.对于水如何被氧化这个难题前人已做了大量的工作,但到目前为止放氧复合物(OEC)的结构及水氧化的机理仍不清楚.本文结合当前研究结果,就光合放氧复合物的结构及光合放氧机理进行了综述,希望能有助于推进这方面的工作.  相似文献   

9.
The photochemistry (Type I and II) of anthralin and its photo-oxidation product 1,8-dihydroxyanthraquinone (1,8-DHAQ) has been studied in ethanol, acetonitrile and dimethylsulfoxide using spin-trapping and direct detection of singlet oxygen (1O2) luminescence techniques. In ethanol, where it exists in its neutral form (AN), anthralin does not undergo either Type I or II reactions upon UV-irradiation. In contrast, irradiation of anthralin in acetonitrile, a solvent in which anthralin is partially converted to its corresponding mono-anion (AN-), generates both superoxide and singlet oxygen. Irradiation of anthralin in dimethylsulfoxide, where the AN- form is present in substantial quantity, generates superoxide and solvent derived radicals but no detectable singlet oxygen. UV-irradiation of 1,8-DHAQ in ethanol and acetonitrile produces both superoxide and singlet oxygen in significant yields. In dimethylsulfoxide, on the other hand, only superoxide and solvent derived radicals are observed. The 1O2 quantum yield for AN- and 1,8-DHAQ in acetonitrile were determined to be 0.14 and 0.88 relative to rose bengal in the same solvent. These findings suggest that the AN photosensitization occurs via Type I and II pathways, is solvent dependent and involves AN- as well as its oxidation product 1,8-DHAQ, which is a more potent generator of both singlet oxygen and superoxide.  相似文献   

10.
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II.  相似文献   

11.
The effects of cadmium (from 7.5 to 75 microM) on chloroplasts of rice were studied at the structural and biochemical level. Loss of pigments, reduction of thylakoids and decrease in oxygen evolution and Fv/Fm ratio occur in leaves following cadmium treatment. However, the amount of photosystem II reaction center proteins and that of its light harvesting complex is not affected, indicating that cadmium does not adversely influence the structural organization of this photosystem. In thylakoids isolated from cadmium-treated plants a loss in the capability to reduce 2,6-dichlorophenolindophenol is observed, which is partially restored if diphenylcarbazide is used as an electron donor, indicating that cadmium affects water splitting activity. In thylakoids isolated from control plants and treated with cadmium, diphenylcarbazide preserves most of the photosystem II activity lost after incubation with cadmium; most of the S(2) multiline electron paramagnetic resonance signal from the manganese cluster is lost, whereas the TyrD(+) and other signals are retained. Light-induced photosystem II damage, in vitro, is promoted by Cd-treatment as deduced from the mobility shift of the D1 protein observed by immunoblot.  相似文献   

12.
Abstract— A photoelectrochemical cell has been used to monitor the effects of three enzymes on the photocurrent produced by isolated spinach thylakoids. The enzymes were glucose oxidase, superoxide dismutase and catalase. It is shown that all three inhibit the photocurrent to varying degrees. The results demonstrate that electron transport to the working electrode is mediated by oxygen. Further, the activity monitored originated from photosystem I with oxygen as the acceptor and photosystem II/plastoquinone as the donor. Thus, the photoelectrochemical cell constitutes a potential new approach for the monitoring of pseudocyclic electron transport.  相似文献   

13.
Determining whether alpha-crystallin (the major lens protein) affects the photophysics of hypericin, a photosensitizing agent found in various plants, such as St. John's Wort, is important. Hypericin shows promise in cancer and human immunodeficiency virus therapy but may harm individuals taking St. John's Wort extracts (for mild to moderate depression). Hypericin causes hypericism, which is characterized by cellular damage in light-exposed areas. Ocular tissues are at risk for photosensitized damage; thus, we investigated the effects on hypericin photophysics by alpha-crystallin. We measured the transient absorption spectra and the 1270 nm luminescence of singlet (1Deltag) oxygen produced from hypericin in the presence of alpha-crystallin. alpha-Crystallin complexes hypericin, extending the lifetime of its triplet excited state; the Stern-Volmer slope is negative, but not linear, after a saturation curve. Damage to the lens protein by hypericin is known to occur via singlet oxygen, which oxidizes methionine, tryptophan and histidine residues. Binding to alpha-crystallin does not inhibit singlet oxygen formation by hypericin. alpha-Crystallin reacts with singlet oxygen with a rate constant of 1.3 x 10(8) M(-1) s(-1). Thus, we anticipate that hypericin will be an effective photosensitizer in the lens.  相似文献   

14.
Abstract— Hydrogen was photoproduced from water in a system containing isolated chloroplasts, hy-drogenase, a coupling electron carrier (ferredoxin or methyl viologen), and an oxygen scavenger. The rate and extent of hydrogen production anaerobically was much less than the rate of aerobic electron-carrier reduction by chloroplasts and was not limited by hydrogenase. The limiting reaction in the coupled system was the extent of reduction of methyl viologen anaerobically rather than its oxidation by oxygen produced during the course of the reaction. Inhibition of photosystem II by 3-(3,4dichlorophenyl)-1,1-dimethylurea and addition of a photosystem 1 electron donor did not lead to photoproduction of hydrogen or photoreduction of methyl viologen. Extensive photosystem I hydrogen evolution was obtained when thiols were also present. Platinum asbestos or palladium asbestos replaced hydrogenase in a system coupled to chloroplasts.  相似文献   

15.
The yield of singlet molecular oxygen, O2(a(1)Delta(g)), produced in a photosensitized process can be very susceptible to environmental perturbations. In the present study, protonation of photosensitizers whose chromophores contain amine functional groups is shown to adversely affect the singlet oxygen yield. Specifically, for bis(amino) phenylene vinylenes dissolved both in water and in toluene, addition of a protic acid to the solution alters properties of the system that, in turn, result in a decrease in the efficiency of singlet oxygen production. In light of previous studies on other molecules where protonation-dependent changes in the yield of photosensitized singlet oxygen production have been ascribed to changes in the quantum yield of the sensitizer triplet state, Phi(T), and to possible changes in the triplet state energy, E(T), our results demonstrate that this photosystem can respond to protonation in other ways. Although protonation-dependent changes in the amount of charge-transfer character in the sensitizer-oxygen complex may influence the singlet oxygen yield, it is likely that other processes also play a role. These include (a) protonation-dependent changes in sensitizer aggregation and (b) nonradiative channels for sensitizer deactivation that are enhanced as a consequence of the reversible protonation/deprotonation of the chromophore. The data obtained, although complicated, are relevant for understanding and ultimately controlling the behavior of photosensitizers in systems with microheterogeneous domains that have appreciable pH gradients. These data are particularly important given the use of such bi-basic chromophores as two-photon singlet oxygen sensitizers, with applications in spatially resolved singlet oxygen experiments (e.g., imaging experiments).  相似文献   

16.
The effect of immobilization in an albumin-glutaraldehyde crosslinked matrix on the structure and activity of a photosystem I submembrane fraction has been studied. The photosynthetic activity recovered after immobilization was between 35 and 45% of the oxygen-uptake rates of the native material. Resulting oxygen uptake activities found in immobilized photosystem I preparations with methylviologen as acceptor were as high as 270 μmol O2 (mg Chl h)-1, An enhancement of photosystem I electron transfer, which is produced by incubation of thylakoid membranes at temperatures above 30 °C, was detected in native submembrane fractions, but not in the immobilized preparations. It is suggested that the increased activity at high temperature results from conformational modifications not allowed in the immobilization matrix. The insensitivity of immobilized photosystem I particles to prolonged storage at 4°C and to strong light exposure, as well as their high electron-transfer rates, demonstrates that the immobilization procedure used can be successfully applied to submembrane fractions.  相似文献   

17.
Merbromin (mercurochrome)--a photosensitizer for singlet oxygen reactions.   总被引:1,自引:0,他引:1  
Merbromin, produced in many countries and used world wide as an antiseptic under the trademark "mercurochrome", is shown to be an efficient sensitizer for type II (singlet oxygen) photo-oxygenations by using 2-methyl-2-butene, (+)-limonene, (+)-alpha-pinene, alpha,alpha'-dimethylstilbenes and (--)-L-methionine as oxygen acceptors. Type I photo-oxygenations are negligible. An estimate of the quantum yield of singlet oxygen formation by merbromin in methanol gives a value of about 0.1.  相似文献   

18.
The dihydroxo(tetraphenylporphyrinato)antimony(V) complex (SbTPP) demonstrates bactericidal activity under visible-light irradiation. This phototoxic effect could be caused by photodamage to biomolecules, but the mechanism has not been well understood. In this study, to clarify the mechanism of phototoxicity by SbTPP, DNA damage photosensitized by SbTPP was examined using [(32)P]-5'-end-labeled DNA fragments. SbTPP induced markedly severe photodamage to single-stranded rather than to double-stranded DNA. Photo-irradiated SbTPP frequently caused DNA cleavage at the guanine residue of single-stranded DNA after Escherichia coli formamidopyrimidine-DNA glycosylase or piperidine treatment. HPLC measurement confirmed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidation product of 2'-deoxyguanosine, and showed that the content of 8-oxodG in single-stranded DNA is larger than that in double-stranded DNA. The effects of scavengers of reactive oxygen species on DNA damage suggested the involvement of singlet oxygen. These results have shown that the mechanism via singlet oxygen formation mainly contributes to the phototoxicity of SbTPP. On the other hand, SbTPP induced DNA damage specifically at the underlined G of 5'-GG, 5'-GGG, and 5'-GGGG in double-stranded DNA. The sequence-specificity of DNA damage is quite similar to that induced by the type I photosensitizers, suggesting that photo-induced electron transfer slightly participates in the phototoxicity of SbTPP. In conclusion, SbTPP induces DNA photodamage via singlet oxygen formation and photo-induced electron transfer. A similar mechanism can damage other biomacromolecules, such as protein and the phospholipid membrane. The damage to biomacromolecules via these mechanisms may participate in the phototoxicity of SbTPP.  相似文献   

19.
In vivo photoinhibition of photosystem I (PS I) was investigated at chilling temperature using the leaves of the chilling-resistant spinach plant treated with an inhibitor of superoxide dismutase, diethyldithiocarbamate (DDC). When spinach leaves were treated with DDC during chilling at 4 degrees C for 12 h with a light intensity of 120 micromol m(-2) s(-1), the activity of PS I and the content of iron-sulfur centers declined to about 50% and 25% of the non-DDC-treated controls, respectively. A native green gel analysis of thylakoid membranes isolated from the DDC-treated leaves resolved a novel chlorophyll-protein complex, which was identified as the light-harvesting complex I (LHC I)-deficient PS I complex when examined by 77 K fluorescence spectroscopy and two-dimensional sodium dodecyl sulfate gel electrophoresis. The possible dissociation of LHC I as an early structural change in the PS I complex after DDC-induced photoinhibition of PS I is discussed.  相似文献   

20.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号