首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of water on the formamide-intercalation of kaolinite   总被引:12,自引:0,他引:12  
The molecular structures of low defect kaolinite completely intercalated with formamide and formamide-water mixtures have been determined using a combination of X-ray diffraction, thermoanalytical techniques, DRIFT and Raman spectroscopy. Expansion of the kaolinite to 10.09 A was observed with subtle differences whether the kaolinite was expanded with formamide or formamide-water mixtures. Thermal analysis showed that greater amounts of formamide could be intercalated into the kaolinite in the presence of water. New infrared bands were observed for the formamide intercalated kaolinites at 3648, 3630 and 3606 cm(-1). These bands are attributed to the hydroxyl stretching frequencies of the inner surface hydroxyls hydrogen bonded to formamide with water, formamide and interlamellar water. Bands were observed at similar positions in the Raman spectrum. At liquid nitrogen temperature, the 3630 cm(-1) Raman band separated into two bands at 3633 and 3625 cm(-1). DRIFT spectra showed the hydroxyl deformation mode at 905 cm(-1). Changes in the molecular structure of the formamide are observed through both the NH stretching vibrations and the amide 1 and 2 bands. Upon intercalation of kaolinite with formamide, bands are observed at 3460, 3344, 3248 and 3167 cm(-1) attributed to the NH stretching vibration of the NH involved with hydrogen bonded to the oxygens of the kaolinite siloxane surface. In the DRIFT spectra of the formamide intercalated kaolinites bands are observed at 1700 and 1671 cm(-1) and are attributed to the amide 1 and amide 2 vibrations.  相似文献   

2.
Raman spectra of randomly-oriented kaolinite, dickite and nacrite show, for coarsely crystalline material, an extra band in the OH stretching region which is absent from the IR spectra of clay-size samples. Oriented single-crystal Raman spectra of these minerals provide confirmation for the assignment of the extra bands to transverse optical modes involving in-phase coupled vibrations of the layer-surface hydroxyl groups. The corresponding IR bands have transition moments nearly perpendicular to the layer surface, and appear at the higher frequencies of the longitudinal optical modes of macroscopic crystals.  相似文献   

3.
Vibrational spectroscopy of formamide-intercalated kaolinites   总被引:2,自引:0,他引:2  
The vibrational spectroscopy of low and high defect kaolinites fully and partially intercalated with formamide have been determined using a combination of X-ray diffraction, DRIFT and Raman spectroscopy. Expansion of the high defect kaolinite to 10.09 A resulted in a decrease in the peak width of the d(001) peak attributed to a decrease in defect structures upon intercalation. Changes in the defect structures of the low defect kaolinite were observed. Additional infrared bands were observed for the formamide intercalated kaolinites at 3629 and 3606 cm(-1). The 3629 cm(-1) band is attributed to the hydroxyl stretching frequency of the inner surface hydroxyl group hydrogen bonded to the carboxyl group of the formamide. The 3606 cm(-1) band is ascribed to water in the interlayer. Concomitant changes are observed in both the hydroxyl deformation modes and in the carboxyl bands.  相似文献   

4.
Controlled rate thermal analysis (CRTA) technology made possible the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites. X-ray diffraction shows that the CRTA-treated formamide-intercalated kaolinites remain expanded after CRTA treatment. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites with both intercalated and adsorbed formamide. An intense band is observed at 3629 cm(-1), attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm(-1) and are attributed to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl stretching band of the inner hydroxyl is readily observed at 3621 cm(-1) in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. The Raman bands of the formamide in the CRTA-treated intercalated kaolinites are readily observed. Copyright 2001 Academic Press.  相似文献   

5.
Newberyite Mg(PO3OH)·3H2O is a mineral found in caves such as from Moorba Cave, Jurien Bay, Western Australia, the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of 'cave' minerals. The intense sharp band at 982 cm(-1) is assigned to the PO4(3-)ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm(-1) are assigned to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm(-1) are attributed to the PO4(3-)ν4 bending modes. An intense Raman band for newberyite at 398 cm(-1) with a shoulder band at 413 cm(-1) is assigned to the PO4(3-)ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728 ? (3267 cm(-1)), 2.781 ? (3374 cm(-1)), 2.868 ? (3479 cm(-1)), and 2.918 ? (3515 cm(-1)). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.  相似文献   

6.
The modification of kaolinite surfaces through mechanochemical treatment has been studied using a combination of mid-IR and near-IR spectroscopy. Kaolinite hydroxyls were lost after 10 h of grinding as evidenced by the decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm(-1) and the deformation modes at 937 and 915 cm(-1). Concomitantly an increase in the hydroxyl-stretching vibrations of water is observed. The mechanochemical activation (dry grinding) causes destruction in the crystal structure of kaolinite by the rupture of the O-H, Al-OH, Al-O-Si and Si-O bonds. Evidence of this destruction may be followed using near-IR spectroscopy. Two intense bands are observed in the spectral region of the first overtone of the hydroxyl-stretching vibration at 7065 and 7163 cm(-1). These two bands decrease in intensity with mechanochemical treatment and two new bands are observed at 6842 and 6978 cm(-1) assigned to the first overtone of the hydroxyl-stretching band of water. Concomitantly the water combination bands observed at 5238 and 5161 cm(-1) increase in intensity with mechanochemical treatment. The destruction of the kaolinite surface may be also followed by the loss of intensity of the two hydroxyl combination bands at 4526 and 4623 cm(-1). Infrared spectroscopy shows that the kaolinite surface has been modified by the removal of the kaolinite hydroxyls and their replacement with water adsorbed on the kaolinite surface. NIR spectroscopy enables the determination of the optimum time for grinding of the kaolinite. Further NIR allows the possibility of continual on-line analysis of the mechanochemical treatment of kaolinite.  相似文献   

7.
A comparison is made between the Raman and infrared spectra of ferruginous smectite and a nontronite using both absorption and emission techniques. Raman spectra show hydroxyl stretching bands at 3572, 3434, 3362, 3220 and 3102 cm(-1). The infrared emission spectra of the hydroxyl stretching region are significantly different to the absorption spectrum. These differences are attributed to the loss of water, absent in the emission spectrum, the reduction of the samples in the spectrometer and possible phase changes. Dehydroxylation of the two minerals may be followed by the loss of intensity of the hydroxyl stretching and hydroxyl deformation frequencies. Hydroxyl deformation modes are observed at 873 and 801 cm(-1) for the ferruginous smectite, and at 776 and 792 cm(-1) for the nontronite. Raman hydroxyl deformation vibrations are found at 879 cm(-1). Other Raman bands are observed at 1092 and 1032 cm(-1), assigned to the SiO stretching vibrations, at 675 and 587 cm(-1), assigned to the hydroxyl translation vibrations, at 487 and 450 cm(-1), attributed to OSiO bending type vibrations, and at 363, 287 and 239 cm(-1). The differences in the molecular structure of the two minerals are attributed to the Al/Fe ratio in the minerals.  相似文献   

8.
高岭石/甲酰胺插层的Raman和DRIFT光谱   总被引:9,自引:0,他引:9  
用Raman和漫反射红外光谱研究高岭石/甲酰胺插层反应机理及插层作用对高岭石微结构的影响.  相似文献   

9.
Raman microscopy has been used to study low and high defect kaolinites and their potassium acetate intercalated complexes at 298 and 77 K. Raman spectroscopy shows significant differences in the spectra of the hydroxyl-stretching region of the two types of kaolinites, which is also reflected in the spectroscopy of the hydroxyl-stretching region of the intercalation complexes. Additional bands to the normally observed kaolinite hydroxyl stretching frequencies are observed for the low and high defect kaolinites at 3605 and 3602 cm(-1) at 298 K. Upon cooling to liquid nitrogen temperature, these bands are observed at 3607 and 3604 cm(-1), thus indicating a weakening of the hydrogen bond formed between the inner surface hydroxyls and the acetate ion. Upon cooling to liquid nitrogen temperature, the frequency of the inner hydroxyls shifted to lower frequencies. Collection of Raman spectra at liquid nitrogen temperature did not give better band separation compared to the room temperature spectra as the bands increased in width and shifted closer together.  相似文献   

10.
The structure of the hydrotalcite desautelsite Mg6Mn2CO3(OH)16.4H2O has been studied by a combination of Raman and infrared spectroscopy. Three intense Raman bands are observed at 1086, 1062 and 1055 cm(-1). A model based upon the observation of three CO3 stretching vibrations is presented. The CO3 anion may be (a) non-hydrogen bonded, (b) hydrogen bonded to the interlayer water and (c) hydrogen bonded to the brucite-like hydroxyl surface. Two intense bands at 3646 and 3608 cm(-1) are attributed to MgOH and MnOH stretching vibrations. Infrared bands at 3476, 3333, 3165 and 2991 cm(-1) are assigned to water stretching bands. Raman spectroscopy has proven a powerful tool for the study of hydrotalcite minerals.  相似文献   

11.
Raman spectroscopy has enabled insights into the molecular structure of the richelsdorfite Ca(2)Cu(5)Sb[Cl|(OH)(6)|(AsO(4))(4)]·6H(2)O. This mineral is based upon the incorporation of arsenate or phosphate with chloride anion into the structure and as a consequence the spectra reflect the bands attributable to these anions, namely arsenate or phosphate and chloride. The richelsdorfite Raman spectrum reflects the spectrum of the arsenate anion and consists of ν(1) at 849, ν(2) at 344 cm(-1), ν(3) at 835 and ν(4) at 546 and 498 cm(-1). A band at 268 cm(-1) is attributed to CuO stretching vibration. Low wavenumber bands at 185 and 144 cm(-1) may be assigned to CuCl TO/LO optic vibrations.  相似文献   

12.
The mineral peisleyite has been studied using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscope (SEM) photomicrographs reveal that the peisleyite morphology consists of an array of small needle-like crystals of around 1 microm in length with a thickness of less than 0.1 microm. Raman spectroscopy in the hydroxyl stretching region shows an intense band at 3506 cm(-1) assigned to the symmetric stretching mode of the OH units. Four bands are observed at 3564, 3404, 3250 and 3135 cm(-1) in the infrared spectrum. These wavenumbers enable an estimation of the hydrogen bond distances 3.052(5), 2.801(0), 2.705(6) and 2.683(6)A. Two intense Raman bands are observed at 1023 and 989 cm(-1) and are assigned to the SO(4) and PO(4) symmetric stretching modes. Other bands are observed at 1356, 1252, 1235, 1152, 1128, 1098 and 1067 cm(-1). The bands at 1067 cm(-1) is attributed to AlOH deformation vibrations. Bands in the low wavenumber region are assigned to the nu(4) and nu(2) out of plane bending modes of the SO(4) and PO(4) units. Raman spectroscopy is a useful tool in determining the vibrational spectroscopy of mixed hydrated multianion minerals such as peisleyite. Information on such a mineral would be difficult to obtain by other means.  相似文献   

13.
A Raman microscope in conjunction with a thermal stage has been used to determine the Raman spectra of single crystals of nacrite at 298 and 77 K. The spectra obtained are a function of the physics of the spectrometer and were orientation dependent. Bands are observed at 3710, 3646, 3630 and 3623 cm(-1). Upon obtaining the Raman spectra at liquid nitrogen temperature, the band at 3648 cm(-1) was not observed but an additional band at 3603 cm(-1) appeared. This latter band may be attributed to the hydroxyl stretching of non-hydrogen bonded interlayer hydroxyls in the nacrite. The bands attributed to both the inner and inner surface hydroxyls moved to lower frequencies upon cooling to liquid nitrogen temperatures. Low frequency bands also showed orientation dependence.  相似文献   

14.
Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K   总被引:6,自引:0,他引:6  
The Raman spectra of urea and urea-intercalated kaolinites have been recorded at 77 K using a Renishaw Raman microprobe equipped with liquid nitrogen cooled microscope stage. The NH2 stretching modes of urea were observed as four bands at 3250, 3321, 3355 and 3425 cm(-1) at 77 K. These four bands are attributed to a change in conformation upon cooling to liquid nitrogen temperature. Upon intercalation of urea into both low and high defect kaolinites, only two bands were observed near 3390 and 3410 cm(-1). This is explained by hydrogen bonding between the amine groups of urea and oxygen atoms of the siloxane layer of kaolinite with only one urea conformation. When the intercalated low defect kaolinite was cooled to 77 K, the bands near 3700 cm(-1) attributed to the stretching modes of the inner surface hydroxyls disappeared and a new band was observed at 3615 cm(-1). This is explained by the breaking of hydrogen bonds involving OH groups of the gibbsite-like layer and formation of new bonds to the C=O group of the intercalated urea. Thus it is suggested that at low temperatures two kinds of hydrogen bonds are formed by urea molecules in urea-intercalated kaolinite.  相似文献   

15.
Raman spectroscopy of newberyite, hannayite and struvite   总被引:1,自引:0,他引:1  
The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are characterised by an intense band at around 980cm(-1) assigned to the v(1) symmetric stretching vibration of the HPO(4) units. In contrast the symmetric stretching mode is observed at 942cm(-1) for struvite. The Raman spectra are characterised by multiple v(3) anti-symmetric stretching bands and v(2) and v(4) bending modes indicating strong distortion of the HPO(4) and PO(4) units. Hannayite and newberyite are defined by bands at 3382 and 3350cm(-1) attributed to HOPO(3) vibrations and hannayite and struvite by bands at 2990, 2973 and 2874 assigned to NH(4)(+) bands. Raman spectroscopy has proven most useful for the analysis of these 'cave' minerals where complex paragenetic relationships exist between the minerals.  相似文献   

16.
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm(-1) is assigned to the ν1 AsO4(3-) (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm(-1) to the ν3 AsO4(3-) antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm(-1) are assigned to the corresponding ν4 and ν2 bending modes and BiOBi (vibration of bridging oxygen) and BiO (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm(-1). A broad low intensity band at 3095 cm(-1) is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm(-1) is assigned to δ(BiOH) vibration.  相似文献   

17.
Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.  相似文献   

18.
Raman spectroscopy complimented with infrared spectroscopy has been used to study the mineral stitchtite, a hydrotalcite of formula Mg6Cr2(CO3)(OH)16.4H2O. Two bands are observed at 1087 and 1067 cm(-1) with an intensity ratio of approximately 2.5/1 and are attributed to the symmetric stretching vibrations of the carbonate anion. The observation of two bands is attributed to two species of carbonate in the interlayer, namely weakly hydrogen bonded and strongly hydrogen bonded. Two infrared bands are found at 1457 and 1381 cm(-1) and are assigned to the antisymmetric stretching modes. These bands were not observed in the Raman spectrum. Two infrared bands are observed at 744 and 685 cm(-1) and are assigned to the nu4 bending modes. Two Raman bands were observed at 539 and 531 cm(-1) attributed to the nu2 bending modes. Importantly the band positions of the paragenically related hydrotalcites stitchtite, iowaite, pyroaurite and reevesite all of which contain the carbonate anion occur at different wavenumbers. Consequently, Raman spectroscopy can be used to distinguish these minerals, particularly in the field where many of these hydrotalcites occur simultaneously in ore zones.  相似文献   

19.
In order to be able to fully understand the vibrational dynamics of monosaccharide sugars, we started with hydroxyacetone CH2OHCOCH3, and glycolaldehyde CH2OHCOH, which are among the smallest molecules that contain hydroxyl and carbonyl group on neighboring carbon atoms. This sterical configuration is characteristic for saccharides and determines their biochemical activity. In this work vibrational analysis of hydroxyacetone was undertaken by performing the normal coordinate analysis for glycolaldehyde first, and transferring these force constants to hydroxyacetone. The observed Raman and infrared bands for 90 wt.% solution of hydroxyacetone in water (acetol) were used as a first approximation for the bands of free hydroxyacetone. The number of observed Raman and infrared bands for acetol exceeds the number of calculated values for the most stable hydroxyacetone conformer with Cs symmetry, which suggests more than one conformer of hydroxyacetone in water solution. In particular, there are two bands both in infrared (1083 and 1057 cm(-1)) and in Raman spectrum (1086.5 and 1053 cm(-1)) that are assigned to the CO stretching mode and this is one of the indicators of several hydroxyacetone conformers in the solution. Additional information was obtained from low temperature Raman spectra: at 240 K a broad asymmetric band centered around 280 cm(-1) appears, suggesting a disorder in the orientation of hydroxyl groups. Glassy state forms at approximately 150K. The broad band at 80 cm(-1) is assigned to frozen torsions of hydroxymethyl groups.  相似文献   

20.
Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号