首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5'-(methyloxycarbonyl)pentyl-1'-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films.  相似文献   

2.
This communication reports the formation of complex Langmuir monolayer at the air-water interface by charge transfer types of interaction with the water soluble N-cetyl N,N,N-trimethyl ammonium bromide (CTAB) molecules doped with rosebengal (RB), with the stearic acid (SA) molecules of a preformed SA Langmuir monolayer. The reaction kinetics of the formation of RB-CTAB-SA complex monolayer was monitored by observing the increase in surface pressure with time while the barrier was kept fixed. Completion of interaction kinetics was confirmed by FTIR study. This complex Langmuir films at the air-water interface was transferred onto solid substrates at a desired surface pressure to form multilayered Langmuir-Blodgett films. Spectroscopic characterizations reveal some molecular level interactions as well as formation of microcrystalline aggregates depending upon the molar ratios of CTAB and RB within the complex LB films. Presence of two types of species in the complex LB films was confirmed by fluorescence spectroscopy.  相似文献   

3.
This paper reports the fabrication and characterization of Langmuir and Langmuir-Blodgett (LB) films incorporating an oligo(phenylene-ethynylene) (OPE) derivative, namely, 4-[4-(4-hexyloxyphenylethynyl)-phenylethynyl]-benzoic acid (HBPEB). Conditions appropriate for deposition of monolayers of HBPEB at the air-water interface have been established and the resulting Langmuir films characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and ultraviolet reflection spectroscopy. The Langmuir films are readily transferred onto solid substrates, and one-layer LB films transferred at several surface pressures onto mica substrates have been analyzed by means of atomic force microscopy, from which it can be concluded that 14 mN/m is an optimum surface pressure of transference, giving well-ordered homogeneous films without three-dimensional defects and a low surface roughness. The optical and emissive properties of the LB films have been determined with significant blue-shifted absorption spectra indicating formation of two-dimensional H aggregates and a Stokes shift illustrating the effects of the solid-like environment on the molecular chromophore.  相似文献   

4.
Octadecanethiol (ODT) is known to form self-assembled monolayer on noble metal surfaces which has potential technological applications. Langmuir-Blodgett (LB) technique is another useful method of obtaining highly ordered assembly of molecules. It is of interest to find whether ODT molecules can also form a stable Langmuir monolayer which facilitates the preparation of LB films. In literature, it has been reported that ODT molecules form an unstable Langmuir monolayer. We have studied the stability of the monolayer of the ODT molecules at air-water interface using surface manometry and microscopy techniques. We find the monolayer to be stable on ultrapure water of resistivity greater than 18MOmega cm. However, the behavior changes in the presence of even small amount of additives like NaOH or CdCl2 in the subphase. Our AFM studies on the LB films of ODT deposited from ion-free ultrapure water showed streak-like bilayer domains. The LB films of ODT deposited from CdCl2 containing aqueous subphase yield dendritic domains of the complexed unit grown over ODT monolayer. These nanostructures on surfaces may have potential applications in molecular electronics.  相似文献   

5.
The aggregation and supramolecular chirality of the interfacial assemblies of an achiral phthalcyanine derivative, zinc 2,3,9,10,16,17,23,24-octakis(octyloxy)-29 H,31 H-phthaloxyanine (ZnPc), were investigated, and a surface pressure dependent behavior was observed. It was found that ZnPc could be spread as a Langmuir film on water surface and transferred onto solid substrates by the horizontal lifting method. The compound formed mixed J- and H-aggregates in the transferred Langmuir-Blodgett (LB) films. Deconvolution of the broaden Q-band revealed three main components of the spectra, which corresponded to H- and J-aggregates and medium transition aggregates, whose relative contents could be modulated by the surface pressure at which the films were transferred. On the other hand, the transferred LB films composed of these aggregates showed Cotton effects in circular dichroism spectra when the floating film was compressed over a certain surface pressure although the compound itself was achiral. The cooperative arrangement of the macrocylic ring in a helical manner through the interfacial organization was suggested to be responsible for such optical activity in the LB films. A possible explanation based on the cooperative arrangement of the ZnPc building blocks in a helical sense stacking in the aggregates was proposed.  相似文献   

6.
This communication reports the surface pressure (pi) versus area per molecule (A) isotherm characteristics of the mixed films of 9-phenyl anthracene (PA) in stearic acid (SA) and polymethyl methacrylate (PMMA) matrices, at the air-water interface. The mixed Langmuir films at the air-water interface have been observed to be easily transferred onto solid substrates to form uniform Langmuir-Blodgett films. By changing various parameters, namely molefraction, surface pressure of lifting and number of layers, the mixed Langmuir-Blodgett (LB) films of various types have been fabricated successfully and their spectroscopic characteristics have been reported. From the isotherm characteristics and the area per molecule versus molefraction plot, it is evident that the PA molecules are successfully incorporated into mixed Langmuir-Blodgett films. UV-vis absorption spectroscopic study of the mixed LB films at various molefractions of PA in two different matrices reveal that formation of I-type aggregate in PMMA matrix whereas both I- and H-type aggregates are playing their dominant role in SA matrix. Moreover, fluorescence spectroscopic study reveals reabsorption effect. Molecular movement persists in the freshly prepared LB films, as is evident from the time dependent changes in both UV-vis absorption and fluorescence spectra of the mixed LB films in both matrices. From our observation it is evident that about 200 h is required to get the LB films in a stable condition. Dimers and higher order n-mers are formed at a higher surface pressure of 30 mNm(-1).  相似文献   

7.
Langmuir-Blodgett (LB) films of some dichroic dyes, namely derivatives of naphthalenebicarboxylic acid and derivatives of naphthoylenebenzimidazole, and of their mixtures with mesogens: 4-octyl-4'-cyanobiphenyl or 4-pentyl-4'-cyano-p-terphenyl were prepared. Absorption and fluorescence studies using unpolarized and linearly polarized light were carried out. Both absorption and fluorescence spectra indicated the formation of aggregates of dye molecules in monomolecular layers. Moreover, it was found that dye molecules are more tilted to the quartz surface in LB films than to the plane of the air-water interface in Langmuir films.  相似文献   

8.
Mixed Langmuir and Langmuir-Blodgett (LB) films of a proton sponge, namely, diphenyl bis(octadecylamino)phosphonium bromide, and a fatty acid, docosanoic acid, with different molar ratios have been fabricated. Surface pressure versus area per molecule isotherms were registered, and the excess areas and excess Gibbs energy of mixing were calculated. Strong interactions between the proton sponge and the fatty acid take place at the air-water interface. The existence of a stoichiometric 1:1 acid-base reaction between the two components forming a complex on the water surface at high surface pressures has been demonstrated. Furthermore, the reaction had an efficiency close to 100% at the air-water interface; meanwhile, it hardly takes place in organic solvents such as chloroform or even a mixture of chloroform and dimethyl sulfoxide. The floating films were transferred to solid supports and characterized by means of several techniques including IR spectroscopy, X-ray diffraction, and atomic force microscopy, revealing the presence of highly ordered alkyl chains and a constant architecture along the different layers as well as the presence of different domains in the LB films, except those having a 1:1 proton sponge-fatty acid ratio that are homogeneous. Such domains have been interpreted as the presence of two different phases, the 1:1 complex plus the excess component in the mixture.  相似文献   

9.
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. On the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein.  相似文献   

10.
The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.  相似文献   

11.
The interaction between chitosan and Langmuir and Langmuir-Blodgett (LB) films of dimyristoyl phosphatidic acid (DMPA) is investigated, with the films serving as simplified cell membrane models. At the air-water interface, chitosan modulates the structural properties of DMPA monolayers, causing expansion and decreasing the monolayer elasticity. As the surface pressure increased, some chitosan molecules remained at the interface, but others were expelled. Chitosan could be transferred onto solid supports alongside DMPA using the LB technique, as confirmed by infrared spectroscopy and quartz crystal microbalance measurements. The analysis of sum-frequency vibration spectroscopy data for the LB films combined with surface potential measurements for the monolayers pointed to chitosan inducing the ordering of the DMPA alkyl chains. Furthermore, the morphology of DMPA LB films, studied with atomic force microscopy, was affected significantly by the incorporation of chitosan, with the mixed chitosan-DMPA films displaying considerably higher thickness and roughness, in addition to chitosan aggregates. Because chitosan affected DMPA films even at pressures characteristic of cell membranes, we believe this study may help elucidate the role of chitosan in biological systems.  相似文献   

12.
利用LB技术研究了带有4个长碳氢链的酞菁铜化合物(CuC12Pc)的单分子膜及它与十八胺(ODA)、二十酸(AA)的混合LB膜的聚集结构形态. 结果表明这种酞菁铜化合物在气液界面上可以形成比较稳定有序的双层Langmuir膜, 且可以转移质量较好的多层LB膜. 利用原子力显微镜(AFM)研究了酞菁铜分子的聚集体结构, 发现CuC12Pc/AA混合膜表现为网状的聚集结构, 而CuC12Pc/ODA混合膜形成长岛颗粒状聚集, 并结合UV-Vis吸收光谱讨论了酞菁铜分子形成不同聚集结构的原因.  相似文献   

13.
The paraoxon hydrolysis reaction catalyzed by organophosphorus hydrolase (OPH) monolayer at the air-water interface was studied. OPH-paraoxon interactions, occurring at the two-dimensional interface, by close-packed, highly orientated OPH monolayer, were investigated by several different surface chemistry techniques; e.g. surface pressure area isotherms, atomic force microscopy (AFM), and in situ epifluorescence microscopy. The characterization of OPH Langmuir and Langmuir-Blodgett films prepared in both the presence and absence of paraoxon, demonstrated significantly distinctive feature when compared with one another. Continuous growth of the OPH aggregates is a distinct phenomenon associated with hydrolysis, in addition to the pH changes in the local environment of the enzyme macromolecules.  相似文献   

14.
We present structural studies of Langmuir (L) and Langmuir-Blodgett (LB) films of new amphiphilic hexa-peri-hexabenzocoronene (HBC) discotics, carrying five branched alkyl side chains and one polar group. The polar group is either a carboxylic acid moiety or an electron acceptor moiety (anthraquinone). Grazing-incidence X-ray diffraction (GIXD) and X-ray reflectivity, both utilizing synchrotron radiation, show that these amphiphilic HBCs form well-defined Langmuir monolayers at the air-water interface, with a pi-stacked columnar structure where the HBC cores are rotated around the surface normal and tilted relative to the water surface. The intercolumnar distance is 20 A. The HBCs are confined to a layer lying on top of the layer of polar groups that are in contact with the water subphase. Efficient transfer of the monolayer of the anthraquinone-substituted HBC derivative to hydrophobic quartz substrates by vertical dipping gave well-defined multilayer Y-type LB films. Polarized optical spectroscopy, GIXD, and X-ray reflectivity measurements show that the LB films consist of at least two phases. Heating the films results in an irreversible rearrangement to a single macroscopically aligned phase of hexagonally packed columns oriented along the dipping direction with disk planes perpendicular to the columnar axes and stacked in a cofacial manner. This phase transition is analogous to the reversible transition observed in the bulk material.  相似文献   

15.
This work reports the adsorption kinetics of a highly fluorescent laser dye rhodamine B (RhB) in a preformed stearic acid (SA) Langmuir monolayer. The reaction kinetics was studied by surface pressure-time (π-t) curve at constant area and in situ fluorescence imaging microscopy (FIM). Increase in surface pressure (at constant area) with time as well as increase in surface coverage of monolayer film at air-water interface provide direct evidence for the interaction. ATR-FTIR spectra also supported the interaction and consequent complexation in the complex films. UV-vis absorption and Fluorescence spectra of the complex Langmuir-Blodgett (LB) films confirm the presence of RhB molecules in the complex films transferred onto solid substrates. The outcome of this work clearly shows successful incorporation of RhB molecules into SA matrix without changing the photophysical characteristics of the dye, thus making the dye material as LB compatible.  相似文献   

16.
We present results concerning the formation of Langmuir-Blodgett (LB) films of a class I hydrophobin from Pleurotus ostreatus at the air-water interface, and their structure as Langmuir-Blodgett (LB) films when deposited on silicon substrates. LB films of the hydrophobin were investigated by atomic force microscopy (AFM). We observed that the compressed film at the air-water interface exhibits a molecular depletion even at low surface pressure. In order to estimate the surface molecular concentration, we fit the experimental isotherm with Volmer's equation describing the equation of state for molecular monolayers. We found that about (1)/ 10 of the molecules contribute to the surface film formation. When transferred on silicon substrates, compact and uniform monomolecular layers about 2.5 nm thick, comparable to a typical molecular size, were observed. The monolayers coexist with protein aggregates, under the typical rodlet form with a uniform thickness of about 5.0 nm. The observed rodlets appear to be a hydrophilic bilayer and can then be responsible for the surface molecular depletion.  相似文献   

17.
The self-assembly and supramolecular engineering of porphyrins into ordered arrays have recently attracted much interest because of their promising application potential in molecular and electronic devices, spintronics, energy harvesting and storage, catalysis, and sensor development. We herein report the synthesis and supramolecular self-assembly study of a novel porphyrin molecule, 2Por-TAZ, in Langmuir and Langmuir-Blodgett films. The 2Por-TAZ molecule contains two porphyrin macrocycles attached to a triaminotriazine headgroup. Triaminotriazines are known to form a highly ordered linear supramolecular self-assembly through complementary hydrogen bonding with barbituric acid molecules at the air-water interface. Surface pressure-area isotherm measurements and polarized UV-vis absorption spectroscopic studies indicate that the 2Por-TAZ molecules adopted an edge-on orientation at the air-water interface. Polarized UV-vis absorption study also revealed that the 2Por-TAZ molecules formed linear supramolecular networks on pure water and barbituric acid subphase with porphyrin flat planes facing toward the compression direction. The binding of barbituric acid with 2Por-TAZ molecules was observed from the expansion of the Langmuir monolayer film. Compared to the transferred LB film from pure water subphase, both the UV-vis absorbance and fluorescence emission intensity of the LB film transferred from barbituric acid subphase increased significantly.  相似文献   

18.
Langmuir films have been fabricated from 4-[4'-(4'-thioacetyl-phenyleneethynylene)-phenyleneethynylene]-aniline (NOPES) after cleavage of the thioacetyl protecting group. Characterization by surface pressure vs area per molecule isotherms and Brewster angle microscopy reveal the formation of a high quality monolayer at the air-water interface. One layer Langmuir-Blodgett (LB) films were readily fabricated by the transfer of the NOPES Langmuir film onto solid substrates. X-ray photoelectron spectroscopy (XPS), surface polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and quartz crystal microbalance (QCM) experiments conclusively demonstrate the formation of one layer LB films in which the functional group associated with binding to the substrate can be tailored by the film transfer conditions. Using LB methods this molecule could be transferred to gold samples with either the amine or thiol group attached to the gold surface. The amine group is directly attached to the gold substrate (Au-NH(2)-OPE-SH) when the substrate is initially immersed in the subphase and withdrawn during the transfer process; in contrast, monomolecular films in which the thiolate group is attached to the gold substrate (Au-S-OPE-NH(2)) are obtained when the substrate is initially out of the subphase and immersed during the transfer process. The morphology of these films was analyzed by atomic force microscopy (AFM), showing the formation of homogeneous layers. Film homogeneity was confirmed by cyclic voltammetry, which revealed a large passivation of gold electrodes covered by NOPES monolayers. Electrical properties for both polar orientated junctions have been investigated by scanning tunnelling microscopy (STM), with both orientations featuring a nonrectifying behavior.  相似文献   

19.
Langmuir monolayer at the air/water interface is the basis to understand the molecular arrangement and to fabricate the organized molecular films1. Bolaamphiphiles describes the molecules in which two head functional groups are linked by one or two hydrophobic chains2,3. In comparison with the one-headed amphiphile, abundant configurations of Langmuir monolayer are expected in bolaamphiphiles. Generally, three kinds of configurations of the Langmuir monolayers of bolaamphiphile at the air/w…  相似文献   

20.
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号