首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miniaturized capillary isoelectric focusing in plastic microfluidic devices   总被引:1,自引:0,他引:1  
Tan W  Fan ZH  Qiu CX  Ricco AJ  Gibbons I 《Electrophoresis》2002,23(20):3638-3645
We report the demonstration of miniaturized capillary isoelectric focusing (CIEF) in plastic microfluidic devices. Conventional CIEF technique was adapted to the microfluidic devices to separate proteins and to detect protein-protein interactions. Both acidic and basic proteins with isoelectric points (pI) ranging from 5.4 to 11.0 were rapidly focused, mobilized, and detected in a 1.2 cm long channel (50 microm deep x 120 microm wide) with a total analysis time of 150 s. In a device with a focusing distance of 4.7 cm, the separation efficiency for a basic protein, lysozyme, was achieved as high as 1.5 x 10(5) plates, corresponding to 3.2 million plates per meter. We also experimentally confirmed that IEF resolution is essentially independent of focusing length when the applied voltage is kept the same and within a range that it does not cause Joule heating. Further, we demonstrated the use of miniaturized CIEF to study the interactions between two pairs of proteins, immunoglobulin G (IgG) with protein G and anti-six histidine (anti-6xHis) with 6xHis-tagged green fluorescent protein (GFP). Using this approach, protein-protein interactions can be detected for as little as 50 fmol of protein. We believe miniaturized CIEF is useful for studying protein-protein interactions when there is a difference in pI between a protein-protein complex and its constitutent proteins.  相似文献   

2.
Capillary isoelectric focusing (CIEF) separations are usually performed with neutral coated fused-silica capillaries in aqueous anticonvective media. Glycerol, a very viscous solvent (eta = 945 mPa x s at 25 degrees C), known to help stabilize any kind of proteins and solubilize hydrophobic ones, was tested as an alternative to using commercial gels. Viscosity and electroosmotic mobility were measured as a function of gel or glycerol content in water, and a 30:70 v/v glycerol-water medium appeared as a good compromise for performing CIEF in a bare fused-silica capillary without imposing too high a viscosity. To demonstrate the feasibility of this new CIEF system, a standard mixture of nine model proteins was separated according to their pI with a good agreement between experimental and literature aqueous pIs. Moreover, better resolution was achieved with this system than with the conventional aqueous CIEF system, as two of the model proteins could not be separated in the latter system. Glycerol-water CIEF in bare silica capillary was next applied to the separation of horse radish peroxidase, a complex mixture of protein isoforms. The good concordance with the separation obtained by the conventional CIEF system indicated the adequacy of this new system. Finally, as anticipated from the results obtained for the separation of bacteriorhodopsin, a membrane protein, glycerol-water CIEF performed in bare silica capillary appears to be a promising alternative to conventional aqueous CIEF for hydrophobic protein characterization, under their native form.  相似文献   

3.
Conditions of capillary isoelectric focusing (CIEF) to separate human cerebrospinal fluid (CSF) proteins were examined referring to those which we have established for the separation of human plasma/serum proteins. Since the average protein concentration in CSF is about 1/200 of plasma and the salt concentration is at almost the same level as plasma, desalting of CSF samples with minimum dilution was a prerequisite for CIEF analysis of CSF proteins. We constructed an apparatus to dialyze CSF at the level of 20-30 microL, this volume being sufficient for 3-4 repeated analyses of the CSF sample. To trace the process of dialysis, a simple device to measure the conductivity of the dialyzate was also constructed. Most of the CIEF conditions for plasma protein analysis could be applied for CSF protein analysis. However, the addition of N,N,N',N'-tetramethylethylenediamine (TEMED) at a suitable concentration was necessary to improve the resolution of basic proteins (IgG region), since some CSF patterns showed peaks of basic proteins which are not obvious in the serum of the same patient. About 70 peaks and shoulders of CSF proteins could be detected by the established CIEF technique. The results of CIEF analysis of CSF samples suggested that the technique will be useful as a survey method to detect specific proteins in CSF, which might relate to disorders in the central nervous system.  相似文献   

4.
Jin Y  Luo G  Oka T  Manabe T 《Electrophoresis》2002,23(19):3385-3391
Synthetic UV-detectable peptide pI markers were used to estimate isoelectric point (pI) values of proteins separated by capillary isoelectric focusing (CIEF) followed by cathodic mobilization in the absence of denaturing agents. The pI calculation and quantitative analysis of purified proteins showed the feasibility of these peptides as pI markers and internal standards in CIEF separation of proteins. Estimation of pI values of major proteins in human plasma was performed using the peptide pI markers, and the values were compared with those previously obtained by gel isoelectric focusing (IEF). Sera of immunoglobulin G (IgG) myeloma patients, which showed characteristic peaks of myeloma IgG in their CIEF patterns, were also subjected to the analysis and the pI values of the myeloma proteins have been estimated.  相似文献   

5.
When electrospray ionisation mass spectrometry (ESI-MS) is used on-line with capillary isoelectric focusing (CIEF), the presence of the carrier ampholytes creating the IEF pH gradient is not desirable. With the purpose of removing these ampholytes, we have developed a free-flow electrophoresis (FFE) device and coupled it to CIEF. The different parameters inherent to the resulting CIEF/FFE system were optimised using ultraviolet absorbance (UV) detection. The on-line coupling of this system with ESI-MS was successfully realised for three model proteins (myoglobin, carbonic anhydrase I and beta-lactoglobulin B).  相似文献   

6.
We prepared a series of low-molecular-mass fluorescent ampholytes with narrow pI range. These fluorescein-based ampholytes are detection compatible with argon laser-induced fluorescence (LIF) detection. The selected properties, important for their routine use as fluorescent pI markers, were examined. The pI values of new fluorescein-based pI markers were determined by capillary isoelectric focusing (CIEF) using currently available low-molecular-mass pI markers for CIEF with photometric detection. The examples of CIEF with fluorometric detection of new compounds together with fluorescein isothiocyanate (FITC) derivatized proteins are presented.  相似文献   

7.
Horká M  Růzicka F  Holá V  Slais K 《Electrophoresis》2007,28(13):2300-2307
The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.  相似文献   

8.
Mao Y  Zhang X 《Electrophoresis》2003,24(18):3289-3295
A comprehensive two-dimensional (2-D) separation system, coupling capillary reverse-phase liquid chromatography (cRPLC) to capillary isoelectric focusing (CIEF), is described for protein and peptide mapping. cRPLC, the first dimension, provided high-resolution separations for salt-free proteins. CIEF, the second dimension with an orthogonal mechanism to cRPLC afforded excellent resolution capability for proteins with efficient protein enrichment. Since all sample fractions in cRPLC effluents could be transferred to the CIEF dimensions, the combination of the two high-efficiency separations resulted in maximal separation capabilities of each dimension. Separation effectiveness of this approach was demonstrated using complex protein/peptide samples, such as yeast cytosol and a BSA tryptic digest. A peak capacity of more than 10 000 had been achieved. A laser-induced fluorescence (LIF) detector, developed for this system, allowed for high-sensitive detection, with a fmol level of peptide detection for the BSA digest. FITC and BODIPY maleimide were used to tag the proteins, and the latter was found better both for separation and detection in our 2-D system.  相似文献   

9.
Recent applications of capillary isoelectric focusing   总被引:2,自引:0,他引:2  
Kilár F 《Electrophoresis》2003,24(22-23):3908-3916
After the advent of capillary isoelectric focusing (CIEF) in the 80's several approaches have been developed in order to use the technique in routine analyses. The recent years showed an extensive increase in the applications of this technique employing its exceptionally high-resolution power. Methodological improvements, as well as hyphenation with other electrophoretic and chromatographic separation procedures, proved the versatility of CIEF in studies of clinically important proteins, recombinant product, cell lysates and other complex mixtures. The combination of CIEF with mass spectrometry detection is one of the major challenges for studying proteomics. This review collected the recent applications of CIEF including innovations in the experimental setup, remedies for the presence of salts in samples, calibration of the pH gradient, carrier ampholyte-free isoelectric focusing, the progress in micropreparation, two-dimensional separations, etc.  相似文献   

10.
Huang T  Pawliszyn J 《Electrophoresis》2002,23(20):3504-3510
A simple microfabrication technique for the preparation of a tapered microchannel for thermally generated pH gradient isoelectric focusing (IEF) has been demonstrated. The tapered channel was cut into a plastic sheet (thickness was 120 microm), and the channel was closed by sandwiching the plastic sheet between two glass microscope slides. The length of the microchannel was 5 cm. The width of the separation channel was 0.4 mm at the narrow end and 4 mm at the wide end. The channel was coated with polyacrylamide to prevent electroosmotic flow (EOF) during focusing. Two electrolyte vials were mounted on top of each end of the channel with the wide end of the channel connected to the cathodic vial and the narrow to the anodic vial. The feasibility of the thermally generated pH gradient in a tapered channel was demonstrated. Important parameters that determined the feasibility of using a thermally generated pH gradient in a tapered channel were analyzed. Parameters to be optimized were control of EOF and hydrodynamic flow, selection of power supply mode and prevention of local overheating and air bubble formation. Tris-HCl buffer, which has a high pK(a) dependence with temperature, was used both to dissolve proteins and as the electrolyte. The thermally generated pH gradient separation of proteins was tested by focusing dog, cat and human hemoglobins with a whole column detection capillary IEF (CIEF) system.  相似文献   

11.
Affinity probe capillary isoelectric focusing (CIEF) with laser-induced fluorescence was explored for detection of Ras-like G proteins. In the assay, a fluorescent BODIPY FL GTP analogue (BGTPgammaS) and G protein were incubated resulting in formation of BGTPgammaS-G protein complex. Excess BGTPgammaS was separated from BGTPgammaS-G protein complex by CIEF using a 3-10 pH gradient and detected in whole-column imaging mode. In other cases, a single point detector was used to detect zones during the focusing step of CIEF using a 2.5-5 pH gradient. In this case, analyte peaks passed the detector in approximately 5 min at an electric field of 350 V/cm. Detection during focusing allowed for more reproducible assays at shorter times but with a sacrifice in sensitivity compared to detection during mobilization. Resolution was adequate to separate BGTPgammaS-Ras and BGTPgammaS-Rab3A complexes. Formation of specific complexes was confirmed by adding GTPgammaS to samples containing BGTPgammaS-G protein. GTPgammaS competed with BGTPgammaS for G protein binding sites resulting in decreased BGTPgammaS-G protein peak heights. The concentrating effect of CIEF enabled detection limits of 30 pM.  相似文献   

12.
《Electrophoresis》2017,38(6):914-921
CIEF represents an elegant technique especially for the separation of structural similar analytes, whereas MS is a state‐of‐the‐art instrumentation for the identification and characterization of biomolecules. The combination of both techniques can be realized by hyphenating CIEF with CZE‐ESI‐MS applying a mechanical valve. During the CZE step, the remaining ESI‐interfering components of the CIEF electrolyte are separated from the analytes prior to MS detection. In this work, a multiple heart‐cut approach is presented expanding our previous single heart‐cut concept resulting in a dramatical reduction of analysis time. Moreover, different sample transfer loop volumes are systematically compared and discussed in regard to peak width and transfer efficiency. With this major enhancement, model proteins (1.63–9.75 mg/L), covering a wide pI range (5–10), and charge variants from a deglycosylated model antibody were analyzed on intact level. The promising CIEF‐CZE‐MS setup is expected to be applicable in different bioanalytical fields, e.g. for the fast and information rich characterization of therapeutic antibodies.  相似文献   

13.
A high performance liquid chromatography system, a sample preparation device, and an imaged capillary IEF (CIEF) instrument are integrated and multiplexed on-line. The system is equivalent to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), by transferring the principle of 2-D separation to the capillary format. High performance liquid chromatography (HPLC) provides protein separation based on size using a gel filtration chromatography (GFC) column. Each eluted protein is sampled and directed to a novel microdialysis hollow fiber membrane device, where simultaneous desalting and carrier ampholyte mixing occurs. The sample is then driven to the separation column in an on-line fashion, where CIEF takes place. The fluidic technology used by our 2-D system leads to natural automation. The coupling of the two techniques is simple. This is attributed to high speed and efficiency of the sample preparation device that acts as an interface between the two systems, as well as the speed and simplicity of our whole column absorption imaged CIEF instrument. To demonstrate the feasibility of this approach, the separation of a mixture of two model proteins is studied. Sample preparation and CIEF were complete in just 4-5 min, for each of the eluted proteins. Total analysis time is about 24 min. Three-dimensional data representations are constructed. Challenges and methods to further improve our instrument are discussed, and the design of an improved horseshoe-shaped sample preparation sample loop membrane interface is presented and characterized.  相似文献   

14.
Chen J  Lee CS  Shen Y  Smith RD  Baehrecke EH 《Electrophoresis》2002,23(18):3143-3148
On-line combination of capillary isoelectric focusing (CIEF) with capillary reversed-phase liquid chromatography (CRPLC) is developed using a microinjector as the interface for performing two-dimensional (2-D) protein/peptide separations of complex protein mixtures. The focusing effect of CIEF not only contributes to a high-resolution protein/peptide separation, but also may permit the analysis of low-abundance proteins with a typical concentration factor of 50-100 times. The preparative capabilities of CIEF are much larger than most of capillary-based electrokinetic separation techniques since the entire capillary is initially filled with a solution containing proteins/peptides and carrier ampholytes for the creation of a pH gradient inside the capillary. The focused peptides which have a similar pI are coinjected into the second separation dimension and further resolved by their differences in hydrophobicity. The resolving power of combined CIEF-CRPLC system is demonstrated using the soluble fraction of Drosophila salivary glands taken from a period beginning before steroid-triggered programmed cell death and extending to its completion. The separation mechanisms of CIEF and CRPLC are completely orthogonal and the overall peak capacity is estimated to be around approximately 1800 over a run time of less than 8 h. Significant enhancement in the separation peak capacity can be realized by further increasing the number of CIEF fractions and/or slowing the solvent gradient in CRPLC, however, at the expense of overall analysis time. The results of our preliminary studies display significant differences in the separation profiles of peptide samples obtained from salivary glands of animals staged at the 6 and 12 h following puparium formation.  相似文献   

15.
Sixteen peptides (trimers to hexamers) were designed for use as a set of pI markers for capillary isoelectric focusing (CIEF). Each peptide contains one tryptophan residue for detection by UV absorption and other amino acid residues having ionic side chains, which are responsible for focusing to its pI. The pIs of these peptides were determined by slab-gel IEF using commercial carrier ampholytes. The focused peptides in the gel were detected by absorption measurement at 280 nm using a scanning densitometer and the pH gradient was determined by measuring the pH of the gel using an oxidized metal membrane electrode. The pI values of the peptides ranged from 3.38 to 10.17. The obtained values agreed well with the predicted ones, which were calculated based on amino acid compositions, with root mean square differences of 0.15 pH unit. The peptides were detected at 280 nm as very sharp peaks when separated by CIEF. The pI values of some standard proteins were redetermined by CIEF by using this set of peptide pI markers and the values agreed closely with those reported previously. The sharp focusing, stability, high purity and high solubility of these synthetic pI markers should facilitate the profiling of a pH gradient in a capillary and the determination of the pI values of proteins.  相似文献   

16.
The post-genomic era and increased demands for broad proteome measurements have greatly increased the needs for protein identification. We describe a strategy that uses accurate mass measurements and partial amino acid content information to unambiguously identify intact proteins, and show its initial application to the proteomes of Escherichia coli and Saccharomyces cerevisiae. Proteins were extracted from the organisms grown in minimal medium or minimal medium to which isotopically labeled leucine (Leu-D(10)) had been added. The two protein extracts were mixed and analyzed by capillary isoelectric focusing (CIEF) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The incorporation of the isotopically labeled residue has no effect on the CIEF separation of proteins, and both isotopically labeled and unlabeled versions of specific proteins are observed within the same mass spectrum. The difference in the mass of the unlabeled and labeled proteins is used to determine the number of Leu residues present in a particular protein. Proteins can then often be unambiguously identified based on their accurately determined molecular mass and the additional constraint provided by number of Leu residues. The identities of proteins were further confirmed by repeating CIEF/FTICR measurements with samples that contain other isotopically labeled amino acid residues (e.g. His, Arg, Ile, Phe, Lys). A theoretical study of the amino acid composition (for a difference in the amino acid sequence) showed the constraints needed in order to identify the protein unambiguously. Additionally, the mass differences between the predicted and the experimental accurate mass measurement provide insights into the nature of simple post-translational modifications.  相似文献   

17.
Graf M  Wätzig H 《Electrophoresis》2004,25(17):2959-2964
Capillary isoelectric focusing (CIEF) is an important tool for the quality assurance of biotechnologically maintained drugs and for proteome analysis. The critical performance parameters of this technique are the precisions of isoelectric point (pI) values and peak areas. Compared to capillary zone electrophoresis (CZE), where precise results can be obtained (e.g., 0.5% relative standard deviation (RSD) for peak areas, n = 60), only few data are available for CIEF experiments. So far, reproducible data of pI values (RSD = 0.5%) have been acquired, but peak areas show inferior results (about 3-15% RSD). Nonstable capillary coatings and protein adsorption have been discussed as possible reasons. Recent work of Righetti et al. [25, 27] has proven that the use of coated capillaries can reduce the adsorption of proteins by 50% but cannot prevent it. In our CIEF experiments irregular and poorly reproducible peak patterns have been observed. In a long-time experiment of 106 repeated runs, an overall RSD of 10% was obtained for peak areas, RSD of 2% only in series of about 10 consecutive replicates. Especially at higher concentrations the reproducibility deteriorates. This seems to be the result of a self-amplifying process, induced by adsorbed protein molecules, leading to further agglomerations. CZE control experiments in linear polyacrylamide (LPA)-coated capillaries proved a strong pH dependency of these effects within a small range. Compared to bare fused-silica surfaces, adsorption effects are reduced but not inhibited. An enhancement of reproducibility in CIEF experiments can be achieved only by controlling the interactions of proteins and capillary walls.  相似文献   

18.
A new fraction collection system for capillary zone electrophoresis (CZE) and capillary isolelectric focusing (CIEF) is described. Exact timing of the collector steps was based on determining the velocity of each individual zone measured between two detection points close to the end of the capillary. Determination of the zone velocity shortly before collection overcame the need for constant analyte velocity throughout the column. Consequently, sample stacking in CZE with large injection volumes as well as zone focusing in CIEF could be utilized with high collection accuracy. Capillaries of 200 microm inner diameter (ID) were employed in CZE and 100 microm ID in CIEF for the micropreparative mode. A sheath flow fraction collector was used to maintain permanent electric current during the collection. The bulk liquid flow due to siphoning, as well as the backflow arising from the sheath flow droplet pressure, were suppressed by closing the separation system at the inlet with a semipermeable membrane. In the CZE mode, the performance of the fraction collector is demonstrated by isolation of individual peaks from a fluorescently derivatized oligosaccharide ladder. In the CIEF mode, collection of several proteins from a mixture of standards is shown, followed by subsequent analysis of each protein fraction by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).  相似文献   

19.
We have coupled CIEF with an LIF detector that is based on a post‐column sheath flow cuvette. We employed Chromeo P503 as a fluorogenic reagent to label proteins before analysis. This reagent reacts with the ε‐amine of lysine residues, preserving the cationic nature of the residue; labeled proteins generate extremely sharp peaks in CIEF. A set of four standard proteins generated a linear relationship between migration time and pI. A protein homogenate prepared from a Barrett's esophagus cell line resolved over 100 components in a 40 min separation. Detection limits for Chromeo P503‐labeled β‐lactoglobulin were 5 amol injected into the capillary. Fluorescent impurities present in the ampholytes generated a large background signal that degraded the detection limit by four orders of magnitude compared with other forms of capillary electrophoresis with this detector.  相似文献   

20.
An integrated platform consisting of protein separation by CIEF with monolithic immobilized pH gradient (M‐IPG), on‐line digestion by trypsin‐based immobilized enzyme microreactor (trypsin‐IMER), and peptide separation by CZE was established. In such a platform, a tee unit was used not only to connect M‐IPG CIEF column and trypsin‐IMER, but also to supply adjustment buffer to improve the compatibility of protein separation and digestion. Another interface was made by a Teflon tube with a nick to couple IMER and CZE via a short capillary, which was immerged in a centrifuge tube filled with 20 mmol/L glutamic acid, to exchange protein digests buffer and keep electric contact for peptide separation. By such a platform, under the optimal conditions, a mixture of ribonuclease A, myoglobin and BSA was separated into 12 fractions by M‐IPG CIEF, followed by on‐line digestion by trypsin‐IMER and peptide separation by CZE. Many peaks of tryptic peptides, corresponding to different proteins, were observed with high UV signals, indicating the excellent performance of such an integrated system. We hope that the CE‐based on‐line platform developed herein would provide another powerful alternative for an integrated analysis of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号