首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ion irradiation defects on the carrier concentration of 6H-SiC epitaxial layer were studied by current–voltage (I–V), capacitance.-voltage (C–V) measurements, thermally stimulated capacitance and deep level transient spectroscopy. The defects were produced by irradiation with 10 MeV C+ at a fluence of 1011 ions/cm2 and subsequent thermal annealings were carried out in the temperature range 500–1700 K under N2 flux. I–V and C–V measurements reveal the presence of a high defect concentration after irradiation and annealing at temperature lower than 1000 K. Thermally stimulated capacitance measurements show that some of the defects induce a deactivation of the nitrogen donor, while some of the generated defects, behaving as donor-like traps, contribute to increase the material free carrier concentration at temperatures above their freezing point. Deep level transient spectroscopy measurements performed in the temperature range 150–450 K show the presence of several overlapping traps after ion irradiation and annealing at 1000 K: these traps suffer a recovery and a transformation at higher temperatures. The annealing of all traps at temperatures as high as 1700 K allows one to completely restore the n-type conductivity. The defects mainly responsible of the observed change in the carrier concentration are identified. PACS 73.30.+y; 61.80.Jh; 61.82.Fk; 85.30.Hi  相似文献   

2.
The addition of carbon nanotubes (CNT) in ceramic composites has stimulated a substantial interest due to their high mechanical, thermal and electrical properties. This approach used fluoride additives (AlF3 and MgF2) to prepare multi-walled carbon nanotubes/silicon nitride (MWCNT/Si3N4) composite densified at 1700 °C for 1 h by hot press (HP) sintering. The microstructural analyses of MWCNT/Si3N4 composites indicate that the fluoride additives have substantially improved densification and the transformation of α-Si3N4 to β-Si3N4. As observed, the mechanical properties, i.e. flexural strength, fracture toughness, Young's modulus and hardness of MWCNT/Si3N4 composites are improved with an increasing concentration of MWCNT. These results attributed to the highly dense composites, strong interfacial interaction and the pull-out mechanism of MWCNT and β-Si3N4. The maximum values of fracture toughness flexural strength, Young's modulus, and hardness were 12.76 ± 1.15 MPa.m0.5, 883 ±46 MPa, 260 ±9 GPa, and 26.4 ± 1.3 GPa, respectively. The improved mechanical properties also ascribed to the synergistic strengthening and toughening influence of MWCNT and β-Si3N4.  相似文献   

3.
The passage of heavy ions in a track detector polymeric material produces lattice deformations. These deformations may be in the form of latent tracks or may vanish by self annealing in time. Heavy ion irradiation produces modifications in polymers in their relevant electrical, chemical and optical properties in the form of rearrangement of bonding, cross-linking, chain scission, formation of carbon rich clusters and changes in dielectric properties etc. Modification depends on the ion, its energy and fluence and the polymeric material. In the present work, a study of the dielectric response of pristine and heavy ion irradiated Makrofol-KG polycarbonate is carried out. 40 μm thick Makrofol-KG polycarbonate films were irradiated to various fluences with Si8+ ions of 100 MeV energy from Pelletron at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV from Variable Energy Cyclotron Centre, Kolkata. On irradiation with heavy ions dielectric constant (ɛ′) decreases with frequency where ɛ′ increases with fluence for both the ions. Variation of loss factor (tan δ) with frequency for pristine and irradiated with Si ions reveals that tan δ increases as the frequency increases. Tan δ also increases with fluence. While Ne irradiated samples tan δ shows slight variation with frequency as well as with fluence. Tan δ has positive values indicating the dominance of inductive behavior.   相似文献   

4.
余本海  陈东 《中国物理 B》2012,21(6):60508-060508
The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α-and β-Si3N4.The ground-state parameters accord quite well with the experimental data.Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K.The α→β phase transformation would not occur in a pressure range of 0-40 GPa and a temperature range of 0-300 K.Actually,the α→β transition occurs at 1600 K and 7.98 GPa.For α-and β-Si3N4,the c axes are slightly more incompressible than the a axes.We conclude that β-Si3N4 is a hard material and ductile in nature.On the other hand,β-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0-10 GPa.Besides,the thermodynamic properties such as entropy,heat capacity,and Debye temperature of α-and β-Si3N4 are determined at various temperatures and pressures.Significant features in these properties are observed at high temperature.The calculated results are in good agreement with available experimental data and previous theoretical values.Many fundamental solid-state properties are reported at high pressure and high temperature.Therefore,our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.  相似文献   

5.
We report the structural and optical properties of high-energy ion-beam irradiated Co-doped magnesium titanate thin films. (Mg0.95Co0.05)TiO3 (MCT) thin films were deposited on quartz substrates using radio frequency magnetron sputtering. Subsequently, the films were annealed for crystallinity and were irradiated with 100?MeV Ag ions by varying the ion fluence. The X-ray diffraction patterns of the films before and after the irradiation were refined using the Rietveld refinement and the variations in the lattice parameters were correlated with the ion fluence. Although, annealing of thin films results in an enhancement in refractive index and optical bandgap, the ion fluence induces significant changes in the refractive index and optical bandgap. Atomic force microscopy is employed to study the surface morphology of the films. The impact of ion fluence on structural and optical properties of MCT thin films has been investigated.  相似文献   

6.
The high-temperature phase transition is analyzed according to the DSC of as-cast LaFe11.7 Si1.3 compound and the X-ray patterns of LaFe11.7Si1.3 compounds prepared by high-temperature and short-time annealing. Large amount of 1:13 phase begins to appear in LaFe11.7Si1.3 compound annealed near the melting point of LaFeSi phase (about 1422?K). When the annealing temperature is close to the temperature of peritectic reaction (about 1497?K), the speed of 1:13 phase formation is the fastest. The phase relation and microstructure of the LaFe11.7Si1.3 compounds annealed at 1523?K (5?h), 1373?K (2?h)?+?1523?K (5?h), and 1523?K (7?h) +1373?K (2?h) show that longer time annealing near peritectic reaction is helpful to decrease the impurity phases. For studying the influence of different high-temperature and short-time annealing on magnetic property, the Curie temperature, thermal, and magnetic hystereses, and the magnetocaloric effect of LaFe11.7Si1.3 compound annealed at three different temperatures are also investigated. Three compounds all keep the first order of magnetic transition behavior. The maximal magnetic entropy change ΔSM (T, H) of the samples is 12.9, 16.04, and 23.8?J?kg?1?K?1 under a magnetic field of 0–2?T, respectively.  相似文献   

7.
《Current Applied Physics》2014,14(3):455-461
Present study compares the effects of 200 MeV Ag15+ and 100 MeV O7+ ion irradiations on the structural, interfacial mixing and magnetic properties of annealed Pt/Co/Pt layers fabricated by DC magnetron sputtering. X-ray diffraction analysis shows that ion irradiations coupled with post annealing results in the formation of the face centred tetragonal L10 CoPt phase. Irradiation using 200 MeV Ag15+ ions having higher ionizing energy transfer to the film was found to be more efficient in causing structural phase transition as compared with that using 100 MeV energy O7+ ions having lower ionizing energy transfer at similar fluence. Rutherford back scattering analysis reveals the role of defect mediated inter-atomic diffusion in tailoring the alloy composition of the film irradiated by different energetic ions. A broad magnetic switching field distribution for O7+ ion irradiated films compared to Ag15+ ion irradiation was evident from the magnetic measurements. The contribution of alloy composition to switching field distribution has been discussed in details. Above results showed that the electronic energy loss and fluence dependent defects, generated by irradiation, played an important role in tuning the structural, atomic diffusion and magnetic reversal properties of Pt/Co/Pt.  相似文献   

8.
H. Schmidt  W. Gruber 《哲学杂志》2013,93(11):1485-1493
The crystallisation kinetics of amorphous precursor-derived ceramics of composition Si26C41N33 is investigated as a function of temperature and nitrogen partial pressure using X-ray diffractometry. Isothermal annealing at a pressure of 1 bar leads to simultaneous crystallisation of Si3N4 and SiC, while only crystalline SiC is formed with annealing at a reduced pressure of 1 mbar. Rate constants of crystallisation are determined using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) formalism. For temperatures below 1700°C, crystallisation rates are significantly higher for annealing at 1 mbar compared to 1 bar. For an explanation of the results, a model is proposed, which is based on diffusion-controlled nucleation and growth of crystalline Si3N4 and SiC in an amorphous matrix combined with thermal decomposition of Si3N4 at high temperatures.  相似文献   

9.
In this work, SiO2 layers containing Ge nanocrystals (NCs) obtained by the hot implantation approach were submitted to an ion irradiation process with different 2 MeV Si+ ion fluences. We have investigated the photoluminescence (PL) behavior and structural properties of the irradiated samples as well as the features of the PL and structural recovery after an additional thermal treatment. We have shown that even with the highest ion bombardment fluence employed (2×1015 Si/cm2) there is a residual PL emission (12% from the original) and survival of some Ge NCs is still observed by transmission electron microscopy analysis. Even though the final PL and mean diameter of the nanoparticles under ion irradiation are independent of the implantation temperature or annealing time, the PL and structural recovery of the ion-bombarded samples have a memory effect. We have also observed that the lower the ion bombardment fluence, the less efficient is the PL recovery. We have explained such behavior based on current literature data.  相似文献   

10.
MeV 4He backscattering and x-ray diffraction analysis were used to examine the intermixing of niobium thin films on single crystal silicon during 28Si+ ion bombardment. The ambient temperature dependence of the intermixing is reported. The dependence cannot be explained by either radiation-enhanced diffusion or cascade mixing alone. The silicides. NbSi2 and Nb5Si3, were both observed. Silicide growth was found to be proportional to the square root of the fluence for the case in which the ion range exceeds the film thickness.  相似文献   

11.
The polycrystalline Ti/TiNx multilayer films were deposited by magnetron sputtering, and the as-deposited multilayer coatings were annealed at 500-800 °C for 2-4 h in vacuum. We investigated the effects of annealing temperature and annealing time on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiNx multilayer films. It was found that the hardness increased with annealing temperature. This hardness enhancement was probably caused by the preferred crystalline orientation TiN(1 1 1). The X-ray reflectivity measurements showed that the layer structure of the coatings could be maintained after annealing at 500 °C and the addition of the Si3N4 interlayer to Ti/TiNx multilayer could improve the thermal stability to 800 °C.  相似文献   

12.
Fe5Si95 specimens with an enhanced solubility of Fe in Si by about twenty-one orders of magnitude relative to crystalline Si at room temperature were prepared by the inert gas condensation technique. The thermal stability of the Fe5Si95 sample was investigated by Mössbauer spectroscopy. The spectrum of the as-prepared Fe5Si95 exhibited a broadened many different iron sites in the sample. This material was thermal stable up to temperatures of 673k for one hour. After annealing at 773K for one hour, the intermetallic compound α-FeSi2 was formed in the annealed sample, probably via the precipitation process. The amount of the α-FeSi2 phase increased with the annealing temperature. No β-FeSi2 phase was observes in any of the annealed samples up to an annealing temperature of 1273K For one hour.  相似文献   

13.
Sapphire is a desired material for infrared-transmitting windows and domes because of its excellent optical and mechanical properties. However, its thermal shock resistance is limited by loss of compressive strength along the c-axis of the crystal with increasing temperature. In this paper, double layer films of SiO2/Si3N4 were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and high temperature mechanical performance of infrared windows of sapphire. Composition and structure of each layer of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. Surface morphology and roughness of coated and uncoated sapphire have been measured using a talysurf. Flexural strengths of sapphire sample uncoated and coated with SiO2/Si3N4 have been studied by 3-point bending tests at different temperatures. The results show that SiO2/Si3N4 films can improve the surface morphology and reduce the surface roughness of sapphire substrate. In addition, the designed SiO2/Si3N4 films can increase the transmission of sapphire in mid-wave infrared and strengthen sapphire at high temperatures. Results for 3-point bending tests indicated that the SiO2/Si3N4 films increased the flexural strength of c-axis sapphire by a factor of about 1.4 at 800 °C.  相似文献   

14.
Hall effect and electrical conductivity measurements of defect annealing in 1 ohm-cm n-type and 2 ohm-cm p-type silicon were made following neutron irradiation at ~50°C. Measurements were also made following 400-keV B11 ion implantation into a 100 ohm-cm n-type Si substrate. As the neutron fluence is increased the electrical effects of the damage eventually outweigh those of the chemical dopants, and further changes in the electrical properties become small. Conversely, significant electrical recovery upon annealing begins only when the electrical effects of the remaining damage become comparable to those of the chemical dopants. This condition will occur at higher anneal temperatures for higher fluence irradiations. The neutron fluence dependence of the damage and the annealing is interpreted in terms of the neutron energy per cm3. E, spent in atomic processes divided by the number/cm3, N, of electrically active dopants. When E/N ≤ 0.5 keV the electrical measurements show that the predominant defect annealing occurs below 400°C. However, when E/N > 0.5 keV electrical measurements emphasize the annealing at temperatures > 400°C. After 500°C annealing, energy levels in neutron damaged Si are observed at Ev +0.1 and Ev +0.15 eV in p-type and at Ec -0.33 eV in n-type Si. Application of the E/N criteria to room temperature implant-doped Si predicts that the electrical effects will be dominated by lattice damage even if all the implanted ions are substitutional.  相似文献   

15.
We present a detailed comparison of the physical properties of as-cast and annealed single crystalline UPt2Si2, a compound whose properties we have shown to be governed by strain disorder on the Pt/Si ligand sites. Contrary to common knowledge, and to our surprise, from our data we do not observe a significant improvement of the physical properties of UPt2Si2 upon annealing at 900 °C for one week. We attribute this to the specific way the strain disorder is produced in UPt2Si2 by presenting evidence that it results from a first order phase transition at ambient temperatures. We discuss the implications of such phase transitions occurring at comparatively low temperatures for the ground state properties of heavy fermion systems and related correlated electron materials.  相似文献   

16.
Organic nonlinear optical crystal dimethyl-amino-pyridinium-4-nitrophenolate-4-nitro-phenol was subjected to 100 MeV Ag8+ ions and 50 MeV Si8+ ions. The radiation effects are studied in terms of processes observed with the pristine samples and in comparison with them. The dielectric properties of the crystals were studied before and after irradiation from 100 Hz to 5 MHz at various temperatures (308–383 K). A drastic increase in the dielectric constant is seen due to irradiation. The dielectric constant and conductivity increases with the increase of irradiation fluence for the samples. The observed results are discussed in detail.  相似文献   

17.
Co67Fe4Mo2Si17B11 metallic glass ribbon has been subjected to the isothermal annealing at temperatures in the range 250–600°C so as to produce a series of samples with gradually coarser microstructure. For this series of samples a giant increase of the coercivity, exceeding five orders of magnitude, is observed. It shows a possibility to tailor soft or hard magnets using the same parent material. An abrupt increase of the coercivity occurs in a relatively small range of annealing temperatures between 480 and 520°C, and is mainly due to a strengthening of the pinning effect of the precipitates (fine crystalline structure) on the domain walls. Samples annealed at higher temperatures become fully crystallized. First, the metastable phase(s) is created which decomposes to the stable phases at still higher temperature. Coercivity for fully crystallized samples shows first a narrow plateau and afterwards a gradual decrease of its value with increasing temperature of annealing. Magnetic and microstructural properties of the samples, annealed at various temperatures, were investigated applying a number of complementary techniques including DSC and TGM methods, X-ray diffraction, TEM, strain-modulated FMR spectroscopy as well as conventional magnetic measurements.  相似文献   

18.
We have performed both zero field and high transverse field measurements at dilution refrigerator temperatures on a number of heavy electron systems, examining the superconducting and magnetic properties of these interesting materials. Among the materials studied to date are UBe13, URu2Si2 and U6Fe. The magnetic field penetration depth in the superconducting state of UBe13 is greater than 10000 Å, as no increase in the transverse field relaxation rate is observed belowT c . A sharp increase in the precession frequency is seen, starting atT c . This frequency shift shows little temperature dependence at low temperature; we found no clear evidence for unconventional superconductivity in this material. Zero field measurements in URu2Si2 show the weak antiferromagnetic transition at 17.5 K. Finally, we we found no clear evidence for unconventional superconductivity in this material. Zero field measurements in URu2Si2 show the weak antiferromagnetic transition at 17.5 K. Finally, we have observed relaxation in high transverse field due to the formation of a flux lattice in U6Fe, a material where the electron effective mass is rather lighter than in other heavy fermion systems. The relaxation exhibits a sharp onset atT c=3.9 K, and is flat at low temperatures as expected for a conventional superconductor.  相似文献   

19.
We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (∼805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.  相似文献   

20.
To study the effects of heavy ion irradiation at low temperature on type II superconductor Nb, the transition temperatureT c , the normal state residual resistivityρ B , the transition widthΔT ph using oxygen ions of 25 MeV and subsequent thermal annealing were measured. The samples were held at temperatures <20 K during irradiation in a cryostat for in situ measurements. The maximum oxygen fluence was about 2·1015 cm?2 corresponding a relatively high defect concentration. The heavy ion irradiation experiments are described. The critical temperatureT c decreases with increasing residual resistivityρ B . In agreement with the theory and experiments, the gap anisotropy parameter is 〈a 2〉=0.008, subsequent annealing shows a hysteresis ofT c versusρ B . The resistivity saturation value ΔρBS = 2.55 μΩ cm was obtained and different recovery stages were found. Significant broadening of transition width during irradiation was observed.T c andΔT ph anneal to 60% in the temperature interval of (60–90) K. Oxygen induced effects as a simulation method of high neutron damage are compared with irradiation measurements using neutrons and deuterons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号