共查询到20条相似文献,搜索用时 15 毫秒
1.
Juraj Piešťanský Katarína Maráková Lucia Veizerová Jaroslav Galba Peter Mikuš 《Analytica chimica acta》2014
A new highly advanced analytical approach, based on two-dimensional column coupled CE (ITP-CZE) hyphenated with tandem mass spectrometry (MS/MS, here triple quadrupole, QqQ) was developed, evaluated and applied in biomedical field in the present work. Capillary isotachophoresis (ITP) coupled on-line with capillary zone electrophoresis (CZE) used in hydrodynamically closed separation system was favorable for increasing the sample load capacity, increasing the analyte concentration, and removing the deteriorative highly conductive major matrix constituents. These factors considerably reduced the concentration limits of detection (cLOD) and external sample preparation (comparing to single column CZE), and, by that, provided favorable conditions for the mass spectrometry (enhanced signal to noise ratio, reproducibility of measurements, working life of MS). Here, the CZE–ESI combination provided more effective interfacing than ITP–ESI resulting in both a higher obtainable intensity of MS detection signal of the analyte as well as reproducibility of measurements of the analyte’s peak area. The optimized ITP-CZE–ESI-QqQ method was successfully evaluated as for its performance parameters (LOD, LOQ, linearity, precision, recovery/accuracy) and applied for the direct identification and ultratrace (pg mL−1) determination of varenicline and, in addition, identification of its targeted metabolite, 2-hydroxy-varenicline, in unpretreated/diluted human urine. This application example demonstrated the real analytical potential of this new analytical approach and, at the same time, served as currently the most effective routine clinical method for varenicline. 相似文献
2.
Juraj Piešťanský Katarína Maráková Marián Kovaľ Emil Havránek Peter Mikuš 《Electrophoresis》2015,36(24):3069-3079
A new multidimensional analytical approach for the ultra‐trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on‐line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean‐up) in a large injection volume (1–10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP – chiral CZE‐QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. 相似文献
3.
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well. 相似文献
4.
This feasibility study deals with the use of preparative capillary isotachophoresis (CITP), operating in a discontinuous fractionation mode, to the separations and isolations of glycoforms of recombinant human erythropoietin (rhEPO). The preparative CITP separations were monitored by capillary zone electrophoresis (CZE) with a hydrodynamically closed separation unit. Such a CZE system, suppressing fluctuations of the migration data linked with fluctuations of EOF and hydrodynamic flow, made possible to evaluate and compare the preparative CITP separations performed within a longer time frame. Preparative CITP, carried out in the separation unit with coupled columns of enhanced sample loadability, separating 100 microg of rhEPO in a run lasting ca. 30 min, gave the production rate higher than 55 ng/s for the rhEPO glycoforms. The preparative separations included valve isolations of the glycoforms from the ITP stack into four or six fractions. Such numbers of the fractions corresponded to typical numbers of the major glycoform peaks as resolved in CZE of rhEPO. With respect to close effective mobilities of the glycoforms and a multicomponent nature of rhEPO, the fractions contained mixtures of glycoforms with the dominant glycoforms enriched 10-100-fold, relative to the original rhEPO sample. 相似文献
5.
《Journal of separation science》2017,40(10):2292-2303
Two capillary electrophoresis methods for monitoring renally excreted varenicline, a highly effective drug prescribed for smoking cessation, in human urine were developed and compared. A method combining capillary electrophoresis with mass spectrometry was proposed for the fast analysis of varenicline (analysis time up to 7 min). Here, mass spectrometry was a prerequisite for achieving high sensitivity and selectivity of the analysis suitable for the quantification of a 15 ng/mL level of varenicline in un‐pretreated urine matrices. An alternative approach, two‐dimensional (column‐coupled) capillary electrophoresis with enhanced sample load capacity and ultraviolet detection, was proposed as a low‐cost alternative to capillary electrophoresis with mass spectrometry. The isotachophoresis on‐line sample treatment included simple elimination of the major matrix constituents and stacking of the sample in a large volume so that threefold lower quantitation limits could be easily achieved in comparison to the capillary electrophoresis with mass spectrometry. On the other hand, longer analysis time (ca. 4.5‐fold) and more complex electrolyte system in the coupled zone electrophoresis step (including two additives enhancing separation selectivity, i.e. isopropanol and cyclodextrin) were prerequisites for the complete separation of varenicline from the sample matrix. Anyway, both the developed methods were validated according to the Food and Drug Administration guidelines showing favorable performance parameters, suitable for their routine biomedical use. 相似文献
6.
Rodríguez Flores J Barzas Nevado JJ Contento Salcedo AM Cabello Díaz MP 《Electrophoresis》2004,25(3):454-462
A simple, rapid, and sensitive procedure using nonaqueous capillary electrophoresis (NACE) to measure Paroxetine (one of the mostly used antidepressants for mental diseases treatment) and three metabolites has been developed and validated. Optimum separation of paroxetine and metabolites was obtained on a 57 cm x 75 microm capillary using a nonaqueous buffer system of 9:1 methanol-acetonitrile containing 25 mM ammonium acetate and 1% acetic acid, with temperature and voltage of 25 degrees C and 15 kV, respectively, and hydrodynamic injection. Fluoxetine was used as an internal standard. Good results were obtained for different aspects including stability of the solutions, linearity, accuracy, and precision. Detection limits between 9.3 and 23.1 microg.L(-1) were obtained for paroxetine and its metabolites. A ruggedness test of the method was carried out using the Plackett-Burman fractional factorial model with a matrix of 15 experiments. This method has been used to determine paroxetine and its main metabolite B at clinically relevant levels in human urine. Prior to NACE determination, the samples were purified and enriched by means of an extraction-preconcentration step with a preconditioned C18 cartridge and eluting the compounds with methanol. 相似文献
7.
采用高效毛细管区带电泳法测定人体尿中甲酸含量,尿样经过滤后直接进样,方法简单、快速,测定结果令人满意。电泳电解质体系采用5mmol/L邻苯二甲酸氢钾,0.5mmol/L十六烷基三甲基溴化铵,pH6,50cm×50μmi.d.熔融石英毛细管(有效长度48.5cm),检测波长210nm,负电源,分离电压30kV,压力进样,恒温25℃,每次电泳前用0.1mol/LNaOH及缓冲溶液对毛细管各冲洗5min。同时,采用检测波长与参比波长对调的方法使负峰转变为正峰。 相似文献
8.
《液相色谱法及相关技术杂志》2012,35(18):2887-2894
Abstract Analysis of naproxen (NP) and 6‐O‐desmethylnaproxen (DNP) in human urine samples was carried out using a column‐coupling isotachophoretic analyzer equipped with a conductivity detector. The preseparation capillary (80 mm×0.8 mm I.D.) was connected with an analytical capillary (160 mm×0.3 mm I.D.). The preseparation capillary was filled with the leading electrolyte (LE): 20 mM hydrochloric acid adjusted with creatinine to pH 5.0; 0.1% methylhydroxypropylcellulose. The analytical capillary was filled with the LE: 10 mM hydrochloric acid adjusted with β‐alanine to pH 4.0; 0.1% methylhydroxypropylcellulose. The terminating electrolyte was 10 mM 2‐(N‐morpholino)‐ethanesulfonic acid adjusted with tris(hydroxymethyl) aminomethane to pH 6.9. Limit of quantitation was 1.4 µg/mL for NP and 0.5 µg/mL for DNP. The proposed method was successfully applied to the direct determination of free NP and DNP in urine samples. The total of free and conjugated NP and DNP was obtained by including an alkaline hydrolysis step. 相似文献
9.
CE with indirect UV detection was used for the simultaneous determination of lithium, magnesium, calcium, creatinine, carnitine, and a number of amino acids in human serum. The target analytes, positively charged under acidic electrolyte conditions, were separated with positive separation voltage polarity using 10 mM 4-methylbenzylamine, 4.5 mM citric acid, 25% (v/v) methanol at pH 4.05 as background electrolyte providing optimal separation. When analyzing real samples, however, some peaks were broadened due to essentially destacking conditions. In order to maintain the separation efficiency and also enhance the detection sensitivity, transient isotachophoresis (tITP) sample stacking was applied and yielded theoretical plate numbers in the range from 160,000 (arginine) to 350,000 (creatinine). The limit of detection values with tITP preconcentration were 0.11-0.26 mg L(-1) for metal cations, 1.0 mg L(-1) for creatinine, and 1.3-3.9 mg L(-1) for histidine, lysine, arginine, and ornithine. The method precision for peak areas was from 0.4 to 5.0% relative standard deviation using the matrix sodium as internal standard. The accuracy of the developed tITP-CZE system was verified by consistent results for Li+, Mg2+, Ca2+, and creatinine obtained on analyzing two serum certified reference materials. The only sample preparation required was ultrafiltration and acidification (to release protein-bound alkaline earths), and working ranges for individual analytes corresponded well to clinical concentration ranges. 相似文献
10.
Alfred Böttcher Christoph Möllers Karl J. Lackner Prof. Dr. med. Gerd Schmitz 《Electrophoresis》1998,19(7):1110-1116
An automated free-solution isotachophoresis system (FS-ITP) for preparative fractionation of biopolymers is described, operated in a batch mode. The dimension of the separation chamber allows an up to 1200-fold higher sample load compared to separation in capillaries of 180 μm inner diameter as used in analytical capillary isotachophoresis (C-ITP). The preparative capacity of the system is within the milligram range. The method is fully compatible with analytical C-ITP, which is essential for preparative-scale isotachophoresis with regard to optimization of electrolyte systems and the search for suitable spacers. As a model application the fractionation of human serum proteins is reported. The collected fractions were analyzed by C-ITP and agarose gel electrophoresis. 相似文献
11.
摘要:研究了一种用于临床检测血清蛋白的毛细管区带电泳方法。弹性石英毛细管50μmi.d.×47cm(40cm有效长度),检测波长200nm,血清用运行缓冲液(含12.5mmol/L四硼酸钠、1mmol/L乳酸钙、0.7mmol/L硫酸镁,pH9.70)稀释40倍,气压进样17.23kPa·s,分析电压23kV。正常血清蛋白分为6种,孕妇的分7种(多一个未知的α0峰)。将正常人、孕妇、多发性骨髓瘤和强直性脊柱炎患者的血清蛋白的毛细管电泳与传统的醋酸纤维膜电泳相比较,前者具有高分辨率、在线数据处理和自动化的特 相似文献
12.
Juraj Piestansky Jaroslav Galba Branislav Kovacech Vojtech Parrak Andrej Kovac Peter Mikuš 《Biomedical chromatography : BMC》2020,34(10):e4907
Creatinine is an important diagnostic marker and is also used as a standardization tool for the quantitative evaluation of exogenous/endogenous substances in urine. This study aimed at evaluating and comparing three analytical approaches, based on hyphenations of different separation [two-dimensional capillary isotachophoresis (CITP–CITP), capillary zone electrophoresis (CZE), ultra-high-performance liquid chromatography (UHPLC)] and detection [conductivity (CD), ultraviolet (UV), tandem mass spectrometry (MS/MS)] techniques, for their ability to provide reliable clinical data along with their suitability for the routine clinical use (cost, simplicity, sample throughput). The developed UHPLC–MS/MS, CITP–CITP–CD, and CZE–UV methods were characterized by favorable performance parameters, such as linearity (r ˃ 0.99), precision (relative standard deviation, 0.22–2.97% for the creatinine position in analytical profiles), and recovery (87.1–115.1%). Clinical data, obtained from the analysis of 24 human urine samples by a reference enzymatic method, were comparable with those obtained by the tested methods (Passing–Bablok regression and Bland–Altman analysis), approving their usefulness for the routine clinical use. In this context, the UHPLC–MS/MS method provides benefits of enhanced orthogonality/accuracy and high sample throughput (threefold shorter total analysis times than the CE methods), whereas advantages of the CE methods for routine labs are simplicity and low cost of both the instrumentation and measurements. 相似文献
13.
采用添加乙腈引发的场放大进样与瞬间等速电泳结合的预富集方法,实现了在毛细管内大体积高盐样品中阳离子的有效富集与分离。详细讨论了影响富集的缓冲体系、尾随离子种类、毛细管有效长度、进样时间和等速电泳时间等重要因素。选择在400 mmol/L LiAc-HAc缓冲液(pH 4.5)和400 mmol/L β-丙氨酸-HAc尾随液(pH 4.5)及10 kV下样品和尾随溶液电动注入时间分别为270和90 s的条件下对高盐溶液中两种结构相近的药物普萘洛尔和美托洛尔进行了富集和分离。该方法富集倍数约为常规电动进样的280倍,普萘洛尔和美托洛尔的检出限分别为2×10-3和8×10-3 mg/L。 相似文献
14.
研究了高效毛细管区带电泳分离人血清蛋白质的电泳行为及实验条件 ,建立了分离血清蛋白质的高效毛细管区带电泳法。血清样品经硼酸缓冲液 (5 0 mmol/L,p H8.80 )稀释后 ,以 0 .1 mol/L硼酸缓冲液 (p H9.3 5 ,含4g/L PEG80 0 0 )为电泳介质 ,在 5 0 μm i.d.× 3 7cm弹性石英毛细管柱 (有效柱长为 3 2 cm)中进行电泳分离 ,以2 0 0 nm紫外波长检测。方法简便、快速、重复性好 ,1 2 min内便可完成对血清中蛋白质的电泳分离。 相似文献
15.
Olivia Gordon;Joshua Gibbons;Jared Lamp;Andrew W. Lantz; 《Electrophoresis》2024,45(5-6):537-547
A great need currently exists for rapid, inexpensive, and accurate methods for microbial analysis in the medical, food, industrial, and water quality fields. Here, a novel capillary isotachophoresis (CITP) method is presented for the focusing, sorting, and quantitation of intact cells in mixed samples based on their electrophoretic mobility ranges. Using a series of ion spacers dissolved in the sample, this technique results in several efficient cell peaks in the electropherogram corresponding to specific cell electrophoretic mobility ranges. The concentrations of different species in mixed-cell samples are determined from the cell peak areas and the known peak response factors for the cell species using a series of linear equations. Method design and optimization are discussed, including the choice of running buffer, pH, and ion spacers. Mixed-cell samples of up to four different species were focused and quantified as a proof-of-principle of the method. When sample cell concentrations were toward the middle of the linear response range, accuracies between 1% and 11% and relative standard deviations of 1%–14% were obtained, depending on the number of cell species in the mixture. This work provides a useful basis for future studies of cell quantitation using CITP, which could be potentially applied to a variety of fields including cell growth studies, microbial contamination testing, and sterility testing. 相似文献
16.
Staňová A Marák J Rezeli M Páger C Kilár F Kaniansky D 《Journal of chromatography. A》2011,1218(48):8701-8707
The presented study deals with the off-line coupling of preparative isotachophoresis (pITP) with on-line combination of capillary zone electrophoresis with electrospray mass spectrometric detection (CZE-ESI-MS) used for the analysis of therapeutic peptides (anserine, carnosine, and buserelin) in complex matrix (urine). Preparative capillary isotachophoresis, operating in a discontinuous fractionation mode in column-coupling configuration, served as a sample pretreatment technique to separation, and fractionation of mixture of therapeutic peptides present in urine at low concentration level. The fractions isolated by pITP procedure were subsequently analyzed by capillary zone electrophoresis with electrospray mass spectrometric detection. Acetic acid at 200 mmol L(-1) concentration served as background electrolyte in CZE stage and it is compatible with MS detection in positive ionization mode. In pITP fractionation procedure, sodium cation (10 mmol L(-1) concentration) as leading ion and beta-alanine as terminating ion (20 mmol L(-1) concentration) were used. While using CZE-ESI-MS, the limits of detection were 0.18 μg mL(-1) for carnosine, 0.17 μg mL(-1) for anserine and 0.64 μg mL(-1) for buserelin in water and 0.19 μg mL(-1) for carnosine, 0.50 μg mL(-1) for anserine and 0.74 μg mL(-1) for buserelin in 10 times diluted urine, respectively. The cleaning power of pITP sample pretreatment was proved as the peptides provided the higher MS signals at lower concentration levels resulting from the minimized matrix effects. The quality of obtained MS/MS spectra was very good so that they can provide information about the structure of analytes, and they were used for verification of the analytes identities. The pITP pretreatment improved the detection limits of the analyzed therapeutic peptides at least 25 times compared to the CZE-ESI-MS itself. 相似文献
17.
The potential use of affinity capillary electrophoresis in a microscale search for mutually interacting substances in biological fluid is demonstrated. Some disaccharides, especially gentiobiose (Gen), derivatized with 1-phenyl-3-methyl-5-pyrazolone, caused peak retardation when electrophoresed in a neutral running buffer, containing human serum. Gen, the most significantly retarded disaccharide, was converted to its negatively charged bis-mercaptoethanesulfonate derivative (MerESGen), and a serum sample was analyzed in a neutral buffer containing the derivatized disaccharide. Two peaks, belonging to the beta-globulin fraction, were found to be remarkably retarded in the buffer containing MerES-Gen in a concentration-dependent way. These findings prove an interaction between disaccharides and serum proteins. 相似文献
18.
19.
《Journal of separation science》2003,26(8):693-700
A feasibility study was performed using zone electrophoresis (ZE) coupled on‐line with isotachophoresis (ITP) sample pretreatment on a poly(methyl methacrylate) column‐coupling chip with integrated conductivity detection for direct determination of drugs in serum. Valproic acid (an antiepileptic drug), having a therapeutic range of 0.35–0.69 mmol/L (50–100 mg/L), was a test analyte while reference serum samples served as proteinaceous matrices. ITP provided in the ITP‐ZE combination a multitask sample pretreatment: (1) separation of the analyte from the serum matrix and its concentration into a narrow ITP band, (2) removal of the matrix constituents migrating in the ITP stack from the separation compartment of the chip, (3) ITP stacking of the drug released on a continuous electrophoretic decomposition of the drug‐protein complex. A high sample loadability, closely linked with the use of ITP in the first separation stage, made it possible to inject diluted serum samples with the aid of a 0.95 μL sample channel of the chip. Consequently, a 1–2 μmol/L concentration limit of quantitation for valproate from the response of the conductivity detector in the ZE stage of the combination was reached. The drug could be reliably determined in less than 10 minutes also in instances when its concentration in serum was below the lower value of the therapeutic range. 90–94% recoveries of valproate from serum samples were obtained in its direct ITP‐ZE determination when the filtration of the diluted serum (a 0.45 μm pore size filter) was the only pre‐column sample handling operation. No disturbances attributable to the precipitation of proteins from the loaded samples in the chip channels were detected. 相似文献
20.
提出电堆积与等速电泳结合的毛细管电泳进样富集方法 ,并对电堆积和等速电泳进样富集的最佳条件进行了研究。在 15kV电压 ,电堆积进样 70s和等速电泳富集 40s条件下 ,对两种结构相近的药物普萘洛尔和美托洛尔用毛细管区带电泳法进行了分离。pH 4.0 ,30mmol/L醋酸钠 醋酸、30mmol/Lβ 丙氨酸 醋酸和 1.5 mmol/L醋酸钠 醋酸溶液分别作背景 (或前导 )、尾随和样品缓冲液。与常规电迁移进样方法比较 ,信号增强因子约为 2 5 0和16 0 ;总分析时间与常规法相近。 相似文献