首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the dielectric properties of the isotropic liquid and nematic phase at the phase transition. One strong molecular relaxation is observed in both phases. It is interpreted as related to the relaxation around a short molecular axis, due to the fact that molecules possess a strong longitudinal dipole moment. In the isotropic liquid the relaxation is described by the Debye model, while after entering the nematic phase (at cooling) relaxation becomes described by the Cole–Cole model. The distribution parameter of the Cole–Cole model changes from 0.05 (10 degrees above the temperature of the Iso-N transition) to 0.09 (exactly at the phase transition Iso-N), and finally, it reaches 0.35 (10 degrees below the Iso-N transition). Additionally, we observe that ion contribution to the dielectric response is not influenced by the phase transition. All relaxation parameters are discussed within the context of the phase transition phenomena.  相似文献   

2.
To understand the origin of the dynamical transition, between high-temperature exponential relaxation and low-temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in the presence of disorder) or fully frustrated Ising (in the absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.  相似文献   

3.
The glass transition temperature of poly (maleic anhydride-alt-1-octadecen) and poly (styreneco-maleic anhydride) cumene-terminated thin films has been measured by mechanical relaxation of Langmuir films of these polymers. The dynamical properties show glass-like features (non-Arrhenius relaxation times and non-Debye mechanical response) interpreted by the coupling model. The glass transition temperature values determined by a mechanical relaxation experiment (step-compression) agree very well with those obtained by surface potential measurements. It is found that the glass transition temperature values in thin films decrease by about 100K as compared with those corresponding to the bulk polymers. The coadsorption of the water-insoluble surfactant DODAB decreases the glass transition temperature.  相似文献   

4.
曹万强  成元发  刘俊刁  幸国坤 《物理学报》2000,49(10):2001-2006
用极限动力学模型研究了C60分子在有序-无序相变和玻璃态相变温度区间取向 角为98°和38°的取向概率与温度的关系.计算结果在玻璃态相变点附近的85K,90K和有序- 无序相变点的260K分别与实验值相吻合,取向概率对实验值更精确的拟合及其对温度的二阶 导数预言玻璃态相变点在84K.导出了弛豫规律,其结果表明:双能级的C60分子从非平衡态到平衡态的弛豫行为与非指数因子β有关,其总的弛豫时间决定于其中一个较 短的弛豫时间,展宽指数形式保持不变.讨论了KWW方程的非 关键词: 60')" href="#">C60 取向概率 非平衡态弛豫  相似文献   

5.
张明俊  郭智  邰仁忠  张祥志  罗豪甦 《物理学报》2015,64(14):147801-147801
从极化团簇的随机涨落出发, 利用维纳过程模型, 推导了铁电体中极化长程涨落的弛豫规律以及光强自相关函数所可能的表现形式. 阐述了微观极化团簇的弛豫过程与宏观测量弛豫规律之间的联系. 通过对原有氦氖激光光子关联谱实验装置进行改进, 观测了BaTiO3和0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3单晶中极化团簇长程涨落在居里点和立方到四方相变点附近的弛豫过程. 在BaTiO3中发现极化团簇长程涨落在居里点之上4 K存在双弛豫现象, 此现象与其有序无序相变机理相联系. 在Pb(Mg1/3Nb2/3)O3-0.29PbTiO3中发现极化团簇长程涨落在相变点两侧都存在双弛豫现象. 利用推导的理论结果很好地拟合了实验结果并提取了极化团簇长程涨落的弛豫时间. 两种样品中极化团簇长程涨落的弛豫时间都在相变点出现突变, 并呈现临界慢化现象.  相似文献   

6.
贾雅琼  王殊  朱明  张克声  袁飞阁 《物理学报》2012,61(9):95101-095101
声在多原子分子气体中传播所引起的弛豫过程是探索气体特性的重要方面. 本文通过研究气体声弛豫过程中振动自由度与平动自由度(V-T)以及振动自由度之间(V-V)的分子能量转移模型, 给出了有效比热容与弛豫时间的分解对应关系及其通用获得方法. 该分解模型与现有的声弛豫模型相比, 反映了分解后的V-T 和V-V弛豫过程中振动比热容与弛豫时间的对应关系, 并发现了较高能级是引起对应声弛豫过程的决定因素. 将基于该分解模型获得的气体声弛豫衰减谱经碰撞直径微调改进后, 比现有理论更接近实验数据, 其结果证明了该分解对应关系的正确性和合理性.  相似文献   

7.
A new model is suggested for the relaxation in a system of superparamagnetic particles. The model takes into account the interparticle interaction and ensuing smearing of energy levels for each individual particle, such that the relaxation between the particle states with opposite directions of magnetic moment never occurs as a transition between the states of the same energy. This generalization of the relaxation model accounts for the diversity of relaxation Mössbauer absorption spectra, allowing all the nonstandard features that were observed previously in the experimental spectra of systems with small-sized particles to be described on a qualitative level.  相似文献   

8.
Kinetics of relaxation of photoluminescence from the interband transition between dimensionalquantization levels of electrons and holes in InGaAs/GaAs quantum wells as a function of their distance to an interface with Au is investigated. It is demonstrated that the photoluminescence relaxation time becomes several times shorter when the distance from the quantum well to the interface decreases to several tens of nanometers. It is established that the photoluminescence relaxation time at a shorter wavelength corresponding to a recombination transition between excited states of electrons and holes in the quantum well is shorter than that at a longer wavelength corresponding to a recombination transition between the ground states. A theoretical model explaining this phenomenon is proposed.  相似文献   

9.
We study effects of direct interatomic interaction on cooperative processes in atom-photon dynamics. Using a model of two-level atoms with Ising-type interaction as an example, it is demonstrated that interparticle interaction can promote cooperative radiative relaxation. For small number of atoms this results in inhibition of incoherent spontaneous decay leading to the regime of collective pulse relaxation. Above superradiance threshold increase in delay time and enhancement of superradiance is occurred. In the case of strong interaction (as compared to excitation energy of an atom) transition to the regime of multiphoton relaxation occurs, which we discuss using a simple model of two atoms in a high-Q single mode cavity. It is shown that such transition is accompanied by Rabi oscillations involving many-atom multiphoton states. Dephasing effect of dipole-dipole interaction and solitonic mechanism of relaxation are discussed as well.  相似文献   

10.
The one-dimensional version of the Glarum model of target relaxation by diffusing defects is generalized by considering a finite relaxation rate upon an encounter defect-target. This eliminates the difficulties associated with the instantaneous relaxation of the targets initially occupied by a defect. The diffusion and relaxation processes are described in terms of the master equation for a continuous-time random walk. An exact solution valid for all times and relaxation rates is obtained by the use of the van Kampen-Oppenheim method. The transition from exponential relaxation at short times to fractional exponential behaviour at long times is described in detail.  相似文献   

11.
The relaxation of the nonequilibrium order parameter (wave function of pairs) of a “pure” superconductor is considered for the homogeneous case. The relaxation is due to the electron-phonon interaction. The orderparameter relaxation time is shown to be much longer than the time interval between electron-electron collisions. This relation is explained by the smallness of the superconducting transition temperature compared to both the Fermi energy and the Debye energy in the BCS model.  相似文献   

12.
We investigate the relaxation process and the dynamical heterogeneities of the kinetically constrained Kob-Andersen lattice glass model and show that these are characterized by different time scales. The dynamics is well described within the diffusing defect paradigm, which suggests that we relate the relaxation process to a reverse-percolation transition. This allows for a geometrical interpretation of the relaxation process and of the different time scales.  相似文献   

13.
To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J.Chem. Phys. 25, 439(1956)] is applied to calculate the energy transition rates of VibrationalVibrational(V-V) and Vibrational-Translational(V-T) energy transfer in gas mixtures. The results of calculation for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in that only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures.  相似文献   

14.
15.
The classical hydrodynamic theory for Brownian rotational motion is applied to model compounds of conjugated polymers with alkoxy side chains of variable length. Theory predicts two rotational relaxation times for these types of molecules with the dipole transition moment parallel to the longest axis whereas experiments reveal only one. The rotational relaxation times and their relative amplitudes were calculated for a wide span of axial ratios of a general ellipsoid. In this way, the range in the axial ratios is obtained such that there is a chance to detect both rates experimentally. Rotational relaxation times of five particular molecules were measured in liquid n-butane. Theoretical calculations using ellipsoid parameters obtained from molecular dynamics calculations compare well with experimental results. Calculation of the rotational relaxation times from the autocorrelation function of the transition dipole moment vector requires significantly greater computational effort.  相似文献   

16.
The enthalpy relaxation of polymer-silica nanocomposites prepared by simultaneous polymerization of poly(2-hydroxyethyl methacrylate) (PHEMA) and tetraethyloxysilane, TEOS, a silica precursor, is investigated. Both the glass transition temperature, Tg, and the temperature interval of the glass transition, ΔT g , increase as the silica content in the sample does. Structural relaxation experiments show that the temperature interval in which conformational motions take place broadens as the silica content in the hybrid increases. A phenomenological model based on the evolution of the configurational entropy during the structural relaxation process, the SC model, has been used for determining the temperature dependence of the relaxation times during the process. The results show an increase of the fragility of the polymer as the silica content increases, a feature that can be related to the broadening of the distribution of relaxation times characterized by the β parameter of the stretched exponential distribution. On another hand the silica content increase produces a significant change of the relaxation times in the glassy state.  相似文献   

17.
The seven-equation model for two-phase flows is a full non-equilibrium model, each phase has its own pressure, velocity, temperature, etc. A single value for each property, an equilibrium value, can be achieved by relaxation methods. This model has better features than other reduced models of equilibrium pressure for the numerical approximations in the presence of non-conservative terms. In this paper we modify this model to include the heat and mass transfer. We insert the heat and mass transfer through temperature and Gibbs free energy relaxation effects. New relaxation terms are modeled and new procedures for the instantaneous temperature and Gibbs free energy relaxation toward equilibrium is proposed. For modeling such relaxation terms, our idea is to make use of the assumptions that the mechanical properties, the pressure and the velocity, relax much faster than the thermal properties, the temperature and the Gibbs free energy, and the ratio of the Gibbs free energy relaxation time to the temperature relaxation time is extremely high. All relaxation processes are assumed to be instantaneous, i.e. the relaxation times are very close to zero. The temperature and the Gibbs free energy relaxation are used only at the interfaces. By these modifications we get a new model which is able to deal with transition fronts, evaporation fronts, where heat and mass transfer occur. These fronts appear as extra waves in the system. We use the same test problems on metastable liquids as in Saurel et al. [R. Saurel, F. Petitpas, R. Abgrall, Modeling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech. 607 (2008) 313–350]. We have almost similar results. Computed results are compared to the experimental ones of Simões-Moreira and Shepherd [J.R. Simões-Moreira, J.E. Shepherd, Evaporation waves in superheated dodecane, J. Fluid Mech. 382 (1999) 63–86]. A reasonable agreement is achieved. In addition we consider the six-equation model with a single velocity which is obtained from the seven-equation model in the asymptotic limit of zero velocity relaxation time. The same procedure for the heat and mass transfer is used with the six-equation model and a comparison is made between the results of this model with the results of the seven-equation model.  相似文献   

18.
We study the characteristics of phase transition to take the top-priority of randomization in the rules of NaSch model (i.e.noise-first model) into account via computing the relaxation time and the order parameter.The scaling exponents of the relaxation time and the scaling relation of order parameter,respectively,axe obtained.  相似文献   

19.
Simulation is presented for the case of water coolant outflow with initial supercritical parameters after high pressure pipeline breaking. The nonequilibrium relaxation model of phase transition was developed and validated. The model describes both boiling and condensation processes.  相似文献   

20.
研究可激发气体中振动模式能量转移速率和声弛豫过程形成的关系,将单一气体Tanczos弛豫方程理论[J.Chem.Phys.25,439(1956)]扩展应用于混合气体中振动模式的振动-振动(V-V)和振动-平动(V-T)能量转移速率的计算。在室温下CO2,CH4,CL2,N2和O2组成的多种混合气体中,振动模式能量转移速率的计算结果表明:对于多个振动模式所形成的声复合弛豫过程,各振动模式的声激发能可由V-V能量转移相互耦合后传递给具有最快V-T转移速率的最低振动频率振动模式,再通过该振动模式的V-T转移退激发形成主弛豫过程。这种选择最快转移路径的声激发量弛豫方式,造成了大多数可激发气体中声弛豫吸收谱的实测数据只存在一个吸收峰的现象。从而提供了一个可通过计算微观振动能量转移速率分析混合气体声弛豫过程形成机理的理论模型。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号