首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and characterization of metal poly-yne polymers containing disilane, disiloxane and phosphine groups in the main chain are described. The platinum and palladium poly-yne polymers were synthesized by polycondensation reactions between a metal chloride and an α, ω-bisethynyl complex in amines in the presence of cuprous iodide as a catalyst. The nickel poly-yne polymers were synthesized by an alkynyl ligand exchange reaction between a nickel acetylide and an α, ω-bisethynyl complex in diethylamine in the presence of cuprous iodide as a catalyst. The reaction of the platinum poly-yne polymer, containing disiloxane groups in the main chain, with copper (I) salts afforded adducts of η-2-bonded σ-acetylide polymer complexes. The reactions of the palladium poly-yne polymer, containing phosphine groups in the main chain, with transition-metal carbonyl complexes afforded polymer complexes which have phosphorus in the main chain-transition-metal bonds. A concentrated solution of the platinum poly-yne polymer containing disiloxane groups in the main chain forms a lyotropic liquid crystal in dichloromethane or 1, 2-dichloroethane.  相似文献   

2.
Films of poly(acrylonitrile- co-2,3-dimethyl-1,3-butadiene) were exposed to singlet oxygen. The extent of polymer oxygenation was monitored for singlet oxygen generated (1) within the polymer film and (2) at the polymer surface in an aqueous medium. When singlet oxygen is generated within the film, oxygenation of the polymer is pronounced and extensive. When singlet oxygen is generated at the polymer surface, oxygenation reactions are limited to the surface. The data suggest that the initial oxygenation reactions at the film surface passivate the polymer against further reaction with singlet oxygen and, hence, also minimize the progressively detrimental effects of secondary reactions. These results indicate that one should exercise restraint when implicating singlet oxygen as a reactive species in some processes of polymer oxygenation.  相似文献   

3.
Four azulene dyads have been synthesized and studied by spectroscopic and electrochemical methods. A triarylamine, a boron-dipyrromethene (BDP or BODIPY), a porphyrin, and an isoalloxazine moiety have been linked to an extended π electron system at the 2-position of azulene, leading to the dyads 1-4, respectively. For the synthesis of 1-4, first 2-(4-ethynyl-phenyl)azulene (EPA) was prepared, which was further reacted with the halogenated chromophores by Pd-catalyzed cross-coupling reactions. The dyads 1-4 exhibit strong absorption bands in the visible range, which are dominated by the absorption spectra of the individual subchromophores. Fluorometric studies of 2-4 revealed that after excitation of the subchromophoric unit attached to the parent azulene moiety, quenching mainly through energy transfer to azulene is effective, whereas possible charge-transfer interactions play only a minor role. Potentiodynamic oxidation of the dyads 1-4 leads to the formation of polymer films, which are deposited at the electrode. The polymer film derived from 1 was further characterized by spectroelectrochemistry. During positive doping of poly-1, a strong absorption band appears at 13,200 cm(-1), which is typical for triarylamine radical cations. This band is overlapping with a broad absorption band in the low-energy region that might be caused by charge-transfer interactions within the polymer.  相似文献   

4.
Tailoring of polysilanes with given architectures and reactivities is a great challenge in the field of SiC pre-ceramic polymers. This paper reviews recent polysilane and related copolymer synthesis reactions. It is shown that the Wurtz-type polymerization of dichloro-, trichloro- or tetrachloro-silanes, so far the most extensively studied, enables access to a large variety of architectures ranging from one- to three-dimensional (3D) topologies, and based on secondary >SiR2, tertiary RSi(Si)3 or quaternary Si(Si)4 silicon units in the polymer backbone. These polysilanes usually present an intrinsic low reactivity, detrimental for fiber processing. Examples are given to illustrate how this reactivity can be increased by secondary substitution reactions, which create reactive entities that can favor further crosslinking reactions. Secondly a novel route involving heterogeneously catalyzed disproportionation of chloromethyldisilanes, developed in our laboratory, is reviewed which offers a direct access to polysilyne-type 3D architecture constituted by arrangements of fused rings. The Lewis-base catalyzed disproportionation mechanism is discussed and seems to involve donor-stabilized silylenes as key intermediates in the polymer formation process. The experimental results are supported by ab-initio quantum chemical calculations. Silylenes attack the Si sites of higher functionality causing a high regioselectivity for the exclusive formation of branched oligosilanes. The oligomers undergo thermally induced branching and crosslinking reactions leading to poly(chloromethylsilane)s. Obviously, there are analogies to the oligomer and polymer formation of the transition-metal complex catalyzed dehydropolymerzation of methyldisilanes. Poly(chloromethylsilane)s exhibit a high reactivity due to the presence of Si–Cl bonds. Disproportionation of chloromethyldisilanes in presence of olefins such as styrene provides promising polymer precursors for SiC fibers. Their rheological properties have been investigated for various styrene contents. The polymer fibers spun from melt are cured under ammonia, and then pyrolyzed to silicon carbide fibers, showing temperature resistance up to 1500 °C. © 1996 by John Wiley & Sons, Ltd.  相似文献   

5.
Metal complexes of covalently bound porphyrins are used as sensitive probes for several investigations. Substituted derivatives of tetraphenyl-porphin, phthalocyanine, and naphthalocyanine are synthesized at positively and negatively charged as well as uncharged polymers. The photo-redox activities were studied under irradiation with visible light in the presence of a donor and an acceptor. The triplet life times of covalently bound porphyrin moieties are strongly enhanced compared with the analogous monomeric porphyrins. In addition, the polymer binding results in higher photocatalytic activity. The electron-transfer reactions of Mn(III)-containing porphyrins using the reducing agent dithionite are strongly influenced by the polymer environment. In contrast to monomeric Mn(III)-porphyrins, the porphyrins containing polymers exhibit a two-step reduction which may be due to the change of the conformation of the polymer coil. The catalytic epoxidation of 2,5-dihydrofuran with hypochlorite with formation of 3,4-epoxytetrahydrofuran occurs with water-soluble porphyrins in water. No influence of the polymer environment exists. The different reactions require reaction times from milliseconds up to hours.  相似文献   

6.
The full moment equations and equations using pseudo-kinetic rate constants for binary copolymerization with chain transfer to polymer in the context of the terminal model have been developed and solved numerically for a batch reactor operating over a wide range of conditions. Calculated number- and weight-average molecular weights (M̄n and M̄w) were compared with those found using the pseudo-kinetic rate constant method (PKRCM). The results show that the weight-average molecular weights calculated using PKRCM are in agreement with those found using the method of full moments for binary copolymerization when polymeric radical fractions φ1˙ and φ2˙ of type 1 and 2 (radical centers are on monomer types 1 and 2 for a binary copolymerization) are calculated accounting for chain transfer to small molecules and polymer reactions in addition to propagation reactions. Errors in calculating M̄w using PKRCM are not always negligible when polymer radical fractions are calculated neglecting chain transfer to small molecules and polymer. In this case, the relative error in M̄w by PKRCM increases with increase in monomer conversion, extent of copolymer compositional drift and chain transfer to polymer rates. The errors in calculating M̄w, however, vanish over the entire monomer conversion range for all polymerization conditions when chain transfer reactions are properly taken into account. It is theoretically proven that the pseudo-kinetic rate constant for chain transfer to polymer is valid for copolymerizations. One can therefore conclude that the pseudo-kinetic rate constant method is a valid method for molecular weight modelling for binary and multicomponent polymerizations.  相似文献   

7.
Poly[5,5′-methylene-bis(8-hydroxyquinoline)-7,7′-diylethylene] (MQE) has been prepared by Friedel-Craft polycondensation of 5,5′-methylene-bis(8-hydroxyquinoline) (MBQ) with 1,2-dichloroethane and ethylene glycol in the presence of an acid catalyst under various experimental conditions. Polymer reactions such as hydroxyethylation, carboxymethylation and methylation of one polymer sample were carried out with a view to investigating the effect of these reactions on the properties of the polymer. The polymer samples and the products of methylation (M-MQE) and carboxymethylation (C-MQE) are insoluble in all solvents, except formic acid. A polymer similar in structure to C-MQE was prepared by Friedel-Craft condensation of a carboxymethylated derivative of MBQ with ethyleneglycol. The hydroxyethylated product of polymer sample (MQE-2) is soluble even in DMF and is highly soluble in pyridine. The polymer samples were characterized by i.r. and u.v., estimation of molecular mass, by non-aqueous conductometric titration and solution viscometric study in formic acid and in aqueous sulphuric acid. Various empirical relations were applied to correlate appropriate viscosity parameters with concentration of solution.  相似文献   

8.
Post-synthesis modification of polymers streamlines the synthesis of functionalized polymers, but is often incomplete due to the negative polymer effects. Developing efficient polymer reactions in artificial systems thus represents a long-standing objective in the fields of polymer and material science. Here, we show unprecedented macrocycle-metal-complex-catalyzed systems for efficient polymer reaction that result in 100 % transformation of the main chain functional groups presumably via a processive mode reaction. The complete polymer reactions were confirmed in not only intramolecular reaction (hydroamination) but also intermolecular reaction (hydrosilylation) by using Pd- and Pt-macrocycle-catalyzed systems. The most fascinating feature of the both reactions is that higher-molecular-weight polymers reach completion faster. Various studies suggested that the reactions occur in the catalyst cavity via the formation of a supramolecular complex between the macrocycle catalyst and polymer substrate like pseudorotaxane, which should be of characteristic of the efficient polymer reactions progressing in a processive mode.  相似文献   

9.
Methods for characterising cyclic polymers are illustrated by reference first to dilute solution methods for cyclic poly(dimethylsiloxane) (PDMS) and then to the entrapment of cyclic polymers in networks. Preparative routes to cyclic polymers are then reviewed, including ring-chain equilibration reactions, coupling and condensation reactions and new methods using polymer-supported reagents. Some of the properties of cyclic PDMS are discussed, including differences between ring and chain polymer properties such as their melt viscosities and glass transition temperatures. Methods for preparing the first polymeric catenanes are described, using polymer-supported reagents. Future directions for cyclic polymer chemistry are indicated, including topological polymer chemistry.  相似文献   

10.
The rates of reactions of 5-dimethylamino-1-naphthalenesulphonyl chloride (dansyl chloride) with butylamine in organic solvents have been measured in the presence of polymer such as polyoxyethylene (POE) or polystyrene (PS) as cosolvent and compared with those in the presence of cosolvents of low molecular weight analogues, viz. diethyloxyethane (DEE) and toluene (Tol.). Acceleration by cosolvent POE, compared with DEE, increases with increasing volume fraction of cosolvent and the effect depends on the degree of polymerization of the polymer cosolvent. Similarly, addition of cosolvent PS to ethyl acetate or chloroform results in increase in the reaction rate as compared with cosolvent Tol. The effect by PS also showed dependence on the degree of polymerization. The effect of polymer cosolvent on chemical reactions between two low molecular weight species is explained in terms of the thermodynamics of polymer solutions.  相似文献   

11.
A bis(phenylamino)disulfide was prepared through the reaction of S2Cl2 with aniline, and its configuration was confirmed with elemental analysis, Fourier transform infrared (FTIR), Fourier transform Raman (FT‐Raman), and 1H NMR spectroscopy. A novel conducting polymer, poly[bis(phenylamino)disulfide] (PPAD), was synthesized from bis(phenylamino)disulfide by both chemical and electrochemical polymerization. The structure of this polymer, in which the side‐chain disulfide bonds were linked to the nitrogen atoms of the main‐chain polyaniline, was characterized with FTIR, FT‐Raman, gel permeation chromatography, electron spectroscopy, and X‐ray photoelectron spectroscopy. A four‐probe measurement revealed that the electrical conductivity of PPAD was 1.8 × 10?2 to 2.1 × 10?3 S cm?1, depending on the doping agents and the pH of the medium for either chemical synthesis or electrochemical synthesis. The conductivity, molecular weight, and spectroscopic properties of the polymer, in comparison with those of polyaniline, showed decreases in the polaron delocalization, structural order, and doping level of the main chain because of the steric hindrance of side‐chain S? S bonds. The cyclic voltammograms of the polymer and the monomer showed that the redox reactions (doping/undoping processes) of the main chain (π‐conjugated system) occurred in almost the same potential range of ?0.3 to 0.3 V versus an Ag/AgCl (saturated KCl) electrode as that of thiol (thiolate anion)/disulfide of the side chain in PPAD; the bond cleavage (reduction) and formation (oxidation) reactions of the disulfide bond in the polymer became easier and more reversible than those of the monomer. These results suggested that this conducting organodisulfide polymer might be a candidate material for energy‐storage devices such as lithium secondary batteries, proton‐exchange batteries, and electrochemical capacitors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2329–2339, 2004  相似文献   

12.
Simple inorganic salts are used to tune N‐containing conjugated microporous polymers (CMPs) synthesized by Buchwald–Hartwig (BH) cross‐coupling reactions. Poly(triphenylamine), PTPA, initially shows a broad distribution of micropores, mesopores, and macropores. However, the addition of inorganic salts affects all porous network properties significantly: the pore size distribution is narrowed to the microporous range only, mimicking COFs and MOFs; the BET surface area is radically improved from 58 m2 g?1 to 1152 m2 g?1; and variations of the anion and cation sizes are used to fine‐tune the surface area of PTPA, with the surface area showing a gradual decrease with an increase in the ionic radius of salts. The effect of the salt on the physical properties of the polymer is attributed to adjusting and optimizing the Hansen solubility parameters (HSPs) of solvents for the growing polymer, and named the Beijing–Xi'an Jiaotong (BXJ) method.  相似文献   

13.
Polymer coordinated chromium(III) complexes [Cr(bpy)2(PAA)2]+, 1 , [Cr(bpy)2-(PMA)2]+, 2 , [Cr(phen)2(PAA)2]+, 3 , and [Cr(phen)2(PMA)2]+, 4 , [where bpy, phen, PAA and PMA are, respectively, 2,2′-bipyridine, 1,10-phenanthroline, poly(acrylic acid), and poly(methacrylic acid)] were synthesized. The polymer–chromium(III) complexes were characterized by elemental and spectroscopic analyses. Thermal substitution reactions of these macromolecular chromium(III) complexes in basic solutions lead to the replacement of the polypyridyl ligand by hydroxide ion while in strong acidic solutions the polymer complexes precipitate out. The photochemical reactions are qualitatively similar to that of the thermal reactions and the quantum yields are dependant on the pH of the medium. Further, lower quantum yields were observed for the aquation of the polymer complexes in comparison with the monomeric chromium(III) complexes and the results are discussed in terms of the effect of the polymer environment. Flash photolysis of 1 and 3 results in the formation of transients with maxima at 480 nm for 1 and 470 nm, 580 nm for 3 . The decay of the transients were found to obey first order kinetics and the rate constants were determined. The transients were suggested to be the alkyl-chromium complexes. Flash photolysis of 2 and 4 does not produce transients which is interpreted to be due to the presence of a methyl group in the ligand which hinders the formation of the carbonchromium bond.  相似文献   

14.
Simple inorganic salts are used to tune N‐containing conjugated microporous polymers (CMPs) synthesized by Buchwald–Hartwig (BH) cross‐coupling reactions. Poly(triphenylamine), PTPA, initially shows a broad distribution of micropores, mesopores, and macropores. However, the addition of inorganic salts affects all porous network properties significantly: the pore size distribution is narrowed to the microporous range only, mimicking COFs and MOFs; the BET surface area is radically improved from 58 m2 g?1 to 1152 m2 g?1; and variations of the anion and cation sizes are used to fine‐tune the surface area of PTPA, with the surface area showing a gradual decrease with an increase in the ionic radius of salts. The effect of the salt on the physical properties of the polymer is attributed to adjusting and optimizing the Hansen solubility parameters (HSPs) of solvents for the growing polymer, and named the Beijing–Xi'an Jiaotong (BXJ) method.  相似文献   

15.
During nitroxide-mediated polymerization (NMP) in the presence of a nitroxide R2(R1)NO*, the reversible formation of N-alkoxyamines [P-ON(R1)R2] reduces significantly the concentration of polymer radicals (P*) and their involvement in termination reactions. The control of the livingness and polydispersity of the resulting polymer depends strongly on the magnitude of the bond dissociation energy (BDE) of the C-ON(R1)R2 bond. In this study, theoretical BDEs of a large series of model N-alkoxyamines are calculated with the PM3 method. In order to provide a predictive tool, correlations between the calculated BDEs and the cleavage temperature (T(c)), and the dissociation rate constant (k(d)), of the N-alkoxyamines are established. The homolytic cleavage of the N-OC bond is also investigated at the B3P86/6-311++G(d,p)//B3LYP/6-31G(d), level. Furthermore, a natural bond orbital analysis is carried out for some N-alkoxyamines with a O-C-ON(R1)R2 fragment, and the strengthening of their C-ON(R1)R2 bond is interpreted in terms of stabilizing anomeric interactions.  相似文献   

16.
以二氯-1,3-双(二苯基磷)丙烷基镍(Ⅱ)为催化剂,通过3,6-二氯哒嗪格氏试剂与3,6-二溴-N-戊烷基咔唑共聚得到了一种新型共轭聚合物,并使用IR和1H-NMR等测试手段对单体和聚合物的结构进行了表征。该合成方法所得的共聚物收率为75%,共聚物在N,N-二甲基酰胺(DMF)、二甲基亚砜(DMSO)等极性溶剂和CF3COOH、CH3SO3H、HCOOH等常用有机酸中具有较好的溶解性。用红外(FT-IR)、紫外-可见吸收光谱(UV-vis)、荧光光谱(PL)、X射线衍射、循环伏安(CV)等对聚合物的吸收光谱特性、结晶性和电化学活性进行了探讨。结果表明:聚合物具有较高的发光强度,是一种还原型聚合物,结晶性比较差。  相似文献   

17.
Laser desorption/Fourier transform mass spectra of poly(phenylene sulfide), polyaniline, poly(vinyl phenol), polypyrene, poly(p-phenylene), poly(1-methyl-2,5-pyrrolylene), poly(1-phenyl-2,5-pyrrolylene), and poly(2,5-thienylene) are compared. Poly(phenylene sulfide) fragments at C? S bonds during analysis, but rearrangement is minor. Evidence is found for dibenzothiophene moieties within the polymer chains. Unambiguous determination of the structure of polyaniline is not possible. Rearrangement appears to accompany chain scission. Completely aromatic polymers do not undergo similar reactions during analysis. Species with more carbons than can be accounted for by an integer multiple of six-membered rings arise from side reactions during dehydrocoupling of aromatic monomers. Carbon clusters, which are observed in the spectra of some aromatic polymers, appear to arise from laser volatilization and multiphoton ionization of large polynuclear components that are formed during synthesis. Negative ions of about 40–120 carbons and positive ions with about 120–400 atoms are detected. The results also suggest that the physical dimensions of some polymer molecules might be measured by Fourier transform mass spectrometry.  相似文献   

18.
A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration.  相似文献   

19.
20.
在测定Zieler-Natta催化剂活性中心数的主要方法中,动力学-分子量法不能测定聚合中任意时刻的活性中心数,氚醇淬灭法、阻聚法及~(14)CO标记法等的可靠性尚未得到充分肯定,因而有必要寻找兼具可靠、方便及适用面广等特点的新测定方法。本文报道用乙酰氯作为一种新的淬灭剂测定TiCl_3-烷基铝催化1-辛烯聚合体系活性中心数的初步结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号