首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gold(III) coordination compounds with three water-soluble porphyrins―5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TSPP4–), 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (H2TMPyP4+), and 5,10,15,20-tetrakis(4-N,N,N-trimethylaminophenyl)porphyrin (H2TTMAPP4+)―have been studied. Complex [Au(TTMAPP)]5+ has been prepared for the first time. The analysis of coordination-induced shifts of proton signals in NMR spectra and intensities of Q bands in absorption spectra indicates the high degree of bond covalence in the studied metal porphyrins and a partial transfer of electron density from porphyrin to gold ion. The cationic complexes [Au(TMPyP)]5+ and [Au(TTMAPP)]5+ in aqueous solutions has been found to exist in monomeric form, while anionic complex [Au(TSPP)]3– undergoes dimerization upon growth of concentration and solution ionic strength. Equilibrium constant for dimerization has been calculated, the constant has been found to decrease when temperature rises. Thermodynamic parameters of dimerization process have been determined: ΔH° =–31.8 kJ/mol and ΔS° =–13.8 J/mol K.  相似文献   

2.
2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin has been synthesized, and its acid-base and complexing properties in the systems 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile, acetonitrile-Zn(OAc)2, and 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile-Zn(OAc)2 have been studied by spectrophotometry. Titration of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with 1,8-diazabicyclo[5.4.0]undec-7-ene is accompanied by successive deprotonation of the pyrrole nitrogen atoms with formation of the corresponding mono- and dianion. The overall acid dissociation constant of the title compound has been determined. The complexation of neutral and doubly deprotonated 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with Zn(OAc)2 has been studied, and kinetic parameters for the formation of the zinc complex according to the molecular and ionic mechanisms have been determined. Extra coordination of 1,8-diazabicyclo[5.4.0]undec-7-ene by the zinc complex of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin.  相似文献   

3.
Three kinds of biomimetic heme precursors have been prepared. The first type is based on tetra-aminoporphyrins: either 5,10,15,20-tetrakis (o-aminophenyl)porphyrin (various atropoisomers), or 5,15-bis(2′,6′-diaminophenyl)porphyrin. The second type is based on octa-aminoporphyrins: 5,10,15,20-tetrakis (2′,6′-diamino-4′-tert-butylphenyl)porphyrin. One example of “basket handle” porphyrin demonstrates selective discrimination between O2 and CO with an M value [M=p1/2(O2)/p1/2(CO)] of 105. This is similar to values reported for various natural hemoproteins. The third type is based on aminoporphyrin templates [5, 5,10- or 5,15- and 5,10,15-(2′,6′-dinitro,4′-tert-butylphenyl)porphyrins] which have been tested in asymmetric epoxidation.  相似文献   

4.
With the coordination geometry of DyIII being relatively fixed, oxygen and sulfur atoms were used to replace one porphyrin pyrrole nitrogen atom of sandwich complex [(Bu)4N][DyIII(Pc)(TBPP)] [Pc = dianion of phthalocyanine, TBPP = 5,10,15,20-tetrakis[(4-tert-butyl)phenyl]porphyrin]. The energy barrier of the compounds was enhanced three times, with the order of DyIII(Pc)(STBPP) > DyIII(Pc)(OTBPP) > [(Bu)4N][DyIII(Pc)(TBPP)] [STBPP = monoanion of 5,10,15,20-(4-tert-butyl)phenyl-21-thiaporphyrin, OTBPP = monoanion of 5,10,15,20-(4-tert-butyl)phenyl-21-oxaporphyrin]. Theoretical calculations offer reasonable explanations of such a significant enhancement. The energy barrier of 194 K for DyIII(Pc)(STBPP) represents the highest one among all the bis(tetrapyrrole) dysprosium SMMs, providing a strategy to rationally enhance the anisotropy and energy barrier via atom replacement.  相似文献   

5.
Three tetracationic porphyrins differing in the position of charged nitrogen atoms on the peripheral substituents — 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP4), 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin (TMPyP2), 5,10,15,20-tetrakis(4-trimethylammoniophenyl) porphyrin (TMAPP), and hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP), were immobilized by adsorption and encapsulation in poly(hydroxymethylsiloxane) (PHOMS). The so prepared porphyrin-PHOMS composites were characterized by porosimetry, scanning electron microscopy, fluorescence and diffuse reflectance UV-VIS spectroscopy. It was found that porphyrins are immobilized in the PHOMS matrix in the free base monomer form Their irradiation produced singlet oxygen O2(1Δg) with the lifetime of 10–30 μs.  相似文献   

6.
Transmetallation of zinc (Zn2+) and cadmium (Cd2+) complexes of 5,10,15,20-tetraphenylporphin, 5,10,15,20-tetra(4-chlorophenyl)porphyrin, 5,10,15,20-tetra(4-methoxyphenyl)porphyrin, tetrabenzoporphyrin, and octaphenyltetraazaporphyrin with PdCl2 in DMF was studied by spectrophotometry. The influence of the nature of the tetrapyrrole macrocycle on the reactivity of Zn2+ porphyrins toward palladium chloride in boiling DMF was established. Palladium(II) complexes of 5,10,15,20-tetraphenylporphyrin, 5,10,15,20-tetra(4-chlorophenyl)porphyrin, 5,10,15,20-tetra(4-methoxyphenylporphyrin), and tetrabenzoporphyrin were prepared and identified.  相似文献   

7.
Abstract

Methoxy-isoporphyrins of zinc [5,10,15,20-tetrakis(4-sulfonatophenyl)]porphyrin, ZnTSPP (1a) and zinc [5,10,15,20-tetrakis(4-carboxyphenyl)]porphyrin, ZnTCPP (1b) have been synthesized and characterized using standard spectroscopic techniques (Uv-visible, 1H NMR) , ESI-mass spectrometry and powder X-ray diffraction studies. The isoporphyrins [5-(methoxy)-5,10,15,20-tetrakis(4-sulfonatophenyl)-5H,15H-porphinato]zinc(II) (2a) and [5-(methoxy)-5,10,15,20-tetrakis(4-carboxyphenyl)-5H,21H-porphinato]zinc(II) (2b) are formed due to nucleophilic attack of the methanol to the zinc porphyrin dication. Ceric ammonium nitrate (CAN) was used to oxidize zinc porphyrin and to form zinc porphyrin dication. The electronic spectra of the isoporphyrin complexes 2a and 2b exhibit an intense peak at near IR region . Electrochemical measurements of the synthesized isoporphyrins showed a typical irreversible reduction peak at lower potential. S-containing nucleophiles, which work as reducing agents, convert the zinc isoporphyrins to their parent porphyrins, which supports the electrochemical observations. Their structural properties have been studied using powder X-ray diffraction. The luminescence properties of isoporphyrins were compared with the parent zinc porphyrins.  相似文献   

8.
Herein, we report the third generation of fluorescent probes (arylphosphonic acids) to target calcifications, particularly hydroxyapatite (HAP). In this study, we use highly conjugated porphyrin-based arylphosphonic acids and their diesters, namely 5,10,15,20-tetrakis[m-(diethoxyphosphoryl)phenyl]porphyrin ( m -H8TPPA-OEt8 ) and 5,10,15,20-tetrakis [m-phenylphosphonic acid]porphyrin ( m -H8TPPA ), in comparison with their positional isomers 5,10,15,20-tetrakis[p-(diisopropoxyphosphoryl)phenyl]porphyrin ( p -H8TPPA-iPr8 ) and 5,10,15,20-tetrakis [p-phenylphosphonic acid]porphyrin ( p -H8TPPA ), which have phosphonic acid units bonded to sp2 carbon atoms of the fluorescent core. The conjugation of the fluorescent core is thus extended to the (HAP) through sp2-bonded −PO3H2 units, which generates increased fluorescence upon HAP binding. The resulting fluorescent probes are highly sensitive towards the HAP in rat bone sections. The designed probes are readily taken up by cells. Due to the lower reported toxicity of ( p -H8TPPA ), these probes could find applications in monitoring bone resorption or adsorption, or imaging vascular or soft tissue calcifications for breast cancer diagnosis etc.  相似文献   

9.
Porphyrins are interesting derivatives with low toxicity, tumor avidity and rapid wash-out suggested as potential radiopharmaceuticals in radiolabeled form. In this work, [166Ho] labeled 5,10,15,20-tetrakis(phenyl) porphyrin ([166Ho]-TPP) was prepared using [166Ho]HoCl3 and 5,10,15,20-tetrakis(phenyl)porphyrin (H2TPP) for 12 h at 50 °C (radiochemical purity: >95 ± 2 % ITLC, >99 ± 0.5 % HPLC, specific activity: 0.9–1.1 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 48 h. The partition coefficient was calculated for the compound (log P = 2.01). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and SPECT. A detailed comparative pharmacokinetic study performed for 166Ho cation and [166Ho]-TPP performed up to 24 h. The complex is mostly washed out from the circulation through kidneys and in less extends from the liver. The kidney:blood, kidney:liver and kidney:muscle ratios 4 h post injection were 14, 3.6 and 7.38 respectively.  相似文献   

10.
Summary Gel electrophoresis is described as a new method for the characterisation of water-soluble tetraarylporphyrins and their metal complexes. The migration of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, 5,10,15,20-tetrakis-(4-carboxyphenyl)porphyrin, 5,10,15,20-tetrakis(N-methyl-pyridinio)porphyrin, and of several of their complexes containing Zn, Cu, V, Ni, Ce, Mn, Mo, W, Re, Os and Ta ions has been studied. The separation of tri- and tetrasulphonated tetraphenylporphyrin or tri- and tetramethylated tetrapyridylporphyrin has been achieved. The behaviour of metal porphyrinates in water, e.g. axial hydration and formation of inner salts or ion pairs, can be studied by comparison of migration distances.Part 63: see [1]  相似文献   

11.
Oxidative–reductive and antioxidant properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, and 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin in their reaction with the 2,2-diphenyl-1-picrylhydrazile free radical are studied. Two of the three abovelisted compounds, namely, 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin, were found to possess antioxidant activity, the former’s antioxidant activity being higher, while 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin showed no antioxidant properties. A probable mechanism of antioxidant activity of the studied porphyrins involves hydrogen homolytic detachment from functional substituent in phenyl ring and the hydrogen radical interaction with 2,2-diphenyl-1-picrylhydrazile.  相似文献   

12.
The association process between two water soluble cationic porphyrins, 5,10,15,20-tetrakis[4-(trimethyl-ammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP) and 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), as well as their Cu (II) complexes, with five series of nucleic agents has been studied using UV-VIS spectroscopy in aqueous solutions. During the titration with nucleic compounds the bathochromic effect of porphyrins absorption spectra can be observed as well as the hypochromicity of the Soret maximum. The association constants were calculated using a curve-fitting procedure (KAC of the order of magnitude of 103–105 mol?1). It has been shown that the interactions of H2TTMePP with nucleic agents are much stronger than interactions of H2TMePyP, which is most likely related to the kind and the size of the porphyrin substituent groups partaking in the process of stacking. The strength of the observed associated systems increases generally in a series: nucleic base < nucleoside < nucleotide.   相似文献   

13.
《Tetrahedron: Asymmetry》2003,14(7):837-844
Iodo-(5,10,15,20-tetrakis(1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl)porphyrinatorhodium(III), designated as [Rh(P*)(I)], was prepared and its catalytic activity in the asymmetric cyclopropanation of alkenes with ethyl diazoacetate (EDA) was examined. High catalyst turnovers (TON >103) and moderate enantioselectivities (up to 68% ee) were observed. However, the obtained trans/cis ratios are low. Competition experiments revealed that electron-donating substituents on styrene accelerate the cyclopropanations. The log(kX/kH) versus σ+ plot for substituted styrenes exhibits a good linearity with a small negative ρ+ value (−0.14). [Rh(P*)(I)] is also active in the intramolecular cyclopropanation of allyl diazoacetates. A comparison between rhodium and ruthenium porphyrin complexes was made.  相似文献   

14.
Cu-64 was produced via the 68Zn (p,αn)64Cu nuclear reaction (≈200 mCi, >95 % chemical yield at 180 μA for 1.1 h irradiation, (radionuclidic purity >96 %, copper-67 as impurity) followed by purification with amino functionalized nano magnetic oxide, Fe3O4 aiming to remove trace amount of heavy metal ions from aqueous media due to achieve ultra pure [64Cu] CuCl2 for labeling step. [64Cu] labeled 5,10,15,20-tetrakis(penta fluoro phenyl) porphyrin ([64Cu]-TFPP) was prepared using freshly prepared [64Cu] CuCl2 (Cu-64; T 1/2 = 12.7 h) and 5,10,15,20-tetrakis(penta fluoro phenyl)porphyrin (H2TFPP) for 60 min at 100 °C under reflux condition (radiochemical purity: >97 % ITLC, >98 % HPLC, specific activity: 14–16 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 24 h. The partition coefficient was calculated for the compound (log P = 0.73). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and PET imaging up in 2 and 4 h after injection. A detailed comparative pharmacokinetic study performed for 64Cu cation and [64Cu]-TFPP. The complex is mostly washed out from the circulation through kidneys and liver and can be an interesting tumor imaging/targeting agent due to high specific uptake and rapid excretion through the urinary tract.  相似文献   

15.
Yu Cao 《Tetrahedron letters》2009,50(30):4358-8473
Water-soluble sulfonated tetraarylporphyrins are studied in a wide variety of contexts including as analytical reagents and as possible agents in cancer photodynamic therapy as well as in antiviral and antidiabetic applications. Herein, we report the first synthesis of a pentasulfonated porphyrin bearing an internal cyclic sulfone ring. Treatment of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) with fuming H2SO4 gave a structure consistent with initial sulfonation followed by dehydration to give a sulfone bridge between an ortho-position of one of the phenyl groups and a β-pyrrole position on the porphine ring (TPPS4Sc). The structure was established by electrospray mass spectrometry and 1H NMR. The Soret UV-visible absorption is red shifted by about 32 nm compared to that of TPPS4.  相似文献   

16.
The reduction of two free-base ionic porphyrins: 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-porphyrin (TMPyP) and 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (TSPP) by the hydrated electron was studied under neutral pH in aqueous solution in the absence and in the presence of biomolecules, DNA or HSA. Pulse radiolysis studies provided the spectra of the short-lived π-radical anions and steady-state radiolysis led to formation of stable phlorin or chlorin, the products of two-electron reduction and protonation at a meso and a pyrrolic nitrogen positions or at two β-pyrrole positions, respectively. Identification of the final reduction products was based on their reactivity to molecular oxygen—the phlorin, contrary to chlorine, was oxidized rapidly by O2 to recover the original porphyrin. The stable product of TMPyP reduction was the phlorin, whereas for TSPP the chlorine and the phlorin were obtained. Addition of biomolecules to the solution resulted in changes of the porphyrins spectroscopic properties and in the decrease in rates of the occurring reduction processes proceeding with participation of the porphyrins.  相似文献   

17.
In the reaction with quinazoline and 5-phenyl-1,2,4-triazin-5(2H)-one, 5,10,15,20-tetra(4-methoxyphenyl)porphyrin exhibits nucleophilic properties. In quinazoline excess, C—C coupling occurs at the C=N bond of azines and position 3 of the aryl ring to form 5,10,15,20-tetrakis(3-heteryl-4-methoxyphenyl)porphyrins. Monoheteryl-substituted porphyrin was obtained by the reaction of equimolar amounts of 5,10,15,20-tetra(4-methoxyphenyl)porphyrin and 5-phenyl-1,2,4-triazin-5(2H)-one.  相似文献   

18.
166Ho labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin, and 5,10,15,20-tetrakis(3,4,5-trimethoxyphenyl) porphyrin ([166Ho]–TDMPP and [166Ho]–TTMPP respectively) were prepared with acceptable radiochemical purity and specific activities. Stability and partition coefficient of the complexes were determined in the final formulations and biodistribution studies in mouse demonstrated high accumulation of [166Ho]–TDMPP in the lung and liver and less excretion through the kidney. while [166Ho]–TTMPP was mostly excreted into intestines and kidneys while lungs were a minor accumulation site. In contrast to other reported radiolanthanide labeled porphyrins these two complexes showed less liver accumulation. Further investigation of their potential therapeutic properties is of interest.  相似文献   

19.
Porphyrin derivatives are widely explored and used in photodynamic therapy, for their marvelous therapeutic properties. In order to fill in the gaps of insufficient photosensitizers with near-infrared absorption, three porphyrin molecules, 5,10,15,20-tetrakis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)zinc porphyrin(P1), 5,15-bis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-bis(2-(2-(2-(4-ethynylphenoxy)ethoxy)ethoxy)ethanol)zincporphyrin(P2),5,15-bis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-N,N-dibutyl-4-ethynylaniline zinc porphyrin(P3), were designed and synthesized targeting for more efficient cancer treatment. Excellent photophysical properties were illustrated by UV–vis absorption and emission spectra with enhanced absorbance between 650 and 750?nm and fluorescence emission within 600–800?nm. Besides, with high 1O2 quantum yield, especially P2 (0.89), all porphyrins were further evaluated in vitro by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay against Hela cells and exhibited negligible dark toxicity and robust phototoxicity. Fluorescence confocal laser microscopy confirmed cellular uptake and diffusion of these porphyrins, therefore demonstrated their potential and promising applications in photodynamic therapy.  相似文献   

20.
For preparing a berberine-sensitive electrode, 5,10,15,20-tetrakis[2-(2,3,4,6-tetraacetyl-β-D-glucopyranosyl)-1-O-phenyl]porphyrin (T(o-glu)PPH2) was synthesized from the reaction of pyrrole with ortho-acetylglycosylated benzaldehyde by Lindsay’s method. The electrode based on T(o-glu)PPH2 with an optimized membrane composition exhibits Nernstian response to berberine in the concentration range 2.4 × 10–7–5.0 × 10–3 mol L–1, with a pH range from 3.9 to 10.2, and a fast response time of 30 s. The electrode shows fair selectivity towards berberine with respect to common co-existing species. T(o-glu)PPH2 shows better potentiometric response characteristics comparing to chloro[5,10,15,20-tetrakis[2-(2,3,4,6-tetraacetyl-β-D-glucopyranosyl)-1-O-phenyl]-porphinato]-manganese (MnT(o-glu)PPCl) and better selectivity towards berberine than tetraphenylporphyrin (TPPH2). The effect of the composition of the electrode membrane has been studied and the experimental conditions optimized. The contents of berberine in pharmaceutical tablets were determined by direct potentiometry and the results agreed with values obtained by the pharmacopoeia method. Received: 17 July 2000 / Revised: 18 September 2000 / Accepted: 23 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号