首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theoretical studies of the bulk and surface electronic structures of PbBi4Te7 are presented. The PbBi4Te7 compound has a layered structure of five-layer (Bi2Te3) and seven-layer (PbBi2Te4) blocks alternating along the hexagonal axis. Analysis of the spin-orbit-induced inversion of the band gap edges indicates that this compound is a three-dimensional topological insulator. The topological properties of this compound are mainly determined by the PbBi2Te4 blocks. The Dirac cone is formed on the PbBi4Te7(0001) surface near the $ \bar \Gamma $ \bar \Gamma point for any block (either Bi2Te3 or PbBi2Te4) forming the surface. It is shown that the Dirac state can be localized not only on the surface but also deeply beneath it.  相似文献   

2.
A study has been made of the resistance ρ, the thermopower S, and magnetoresistance MR of Ga2Te3 and α-In2Te3 single crystals at pressures P up to 25 GPa. It is found that the resistance ρ and |S| sharply decrease at ∼0–5 and 1.5–3 GPa, respectively. The semiconductor-metal phase transitions in the temperature range from 77 to 300 K are established from the sign reversal of the temperature coefficient of ρ to occur at P>4.4 and >1.9 GPa. The values S ≈+(10–20)μ V/K for the metallic phases with a Bi2Te3-type structure agree with those for liquid In2Te3 and Ga2Te3. Negative MR is revealed in In2Te3 at P≈1.9 GPa. No MR is observed in Ga2Te3 up to 25 GPa. The variation of the electronic structure of In2Te3 and Ga2Te3 under pressure is discussed. __________ Translated from Fizika Tverdogo Tela, Vol. 42, No. 6, 2000, pp. 1004–1008. Original Russian Text Copyright ? 2000 by Shchennikov, Savchenko, Popova.  相似文献   

3.
As part of a study of defect tetrahedral structure compounds, the elastic constants of single crystal specimens of Hg3Ga2□Te6 and HgIn2□Te4 have been measured between 77 K and room temperature using the pulse superposition technique. These compounds are included in the series HgTe, Hg5In2□Te8, Hg3In2□Te6 and HgIn2□Te4 and HgTe, Hg5Ga2□Te8, Hg3Ga2□Te6 where there is a progressive increase in the concentration of vacant sites. While the other compounds studied are cubic, HgIn2□Te4 has a tetragonal structure with a ca ratio of 2.0. The components of the elastic stiffness tensor of this material at 77 K are (in units of 1011 dyne cm?2) C11 = 4.31 C12 = 2.54 C44 = 2.14 C33 = 4.47 C13 = 2.18 C66 = 2.41. In a cubic material C11 = C33, C44 = C66 and C12 = C13: the elastic behaviour of this tetragonal compound closely resembles that of a cubic material, as might be anticipated from its structure. This similarity is further illustrated by reference to the symmetry of phase velocity and Young's modulus surfaces. Examination of the elastic constants and reduced elastic constants of these compounds shows a regular trend, the elastic stiffness decreases as the number of vacant sites increases. There is an approximately linear relationship between the reduced bulk modulus and the number of sited vacancies.  相似文献   

4.
The electronic structure of AIVBVI · A2VB3VI ternary compounds consisting of seven-layer atomic blocks separated by van der Waals gaps has been theoretically investigated. The YbBi(Sb)2Te4 compounds have been considered, for which a similar atomic structure has been predicted. It has been shown that most compounds based on Group IV elements, as well as YbBi2Te4, are three-dimensional topological insulators. Calculations of the surface electronic structure of MBi2Te4, where M is a Group IV element or Yb, demonstrate the possibility of tuning the Dirac surface conduction state owing to the first element.  相似文献   

5.
A new method for generating spin-polarized currents in topological insulators has been proposed and investigated. The method is associated with the spin-dependent asymmetry of the generation of holes at the Fermi level for branches of topological surface states with the opposite spin orientation under the circularly polarized synchrotron radiation. The result of the generation of holes is the formation of compensating spin-polarized currents, the value of which is determined by the concentration of the generated holes and depends on the specific features of the electronic and spin structures of the system. The indicator of the formed spin-polarized current can be a shift of the Fermi edge in the photoelectron spectra upon photoexcitation by synchrotron radiation with the opposite circular polarization. The topological insulators with different stoichiometric compositions (Bi1.5Sb0.5Te1.8Se1.2 and PbBi2Se2Te2) have been investigated. It has been found that there is a correlation in the shifts and generated spin-polarized currents with the specific features of the electronic spin structure. Investigations of the graphene/Pt(111) system have demonstrated the possibility of using this method for other systems with a spin-polarized electronic structure.  相似文献   

6.
The electronic structure of ternary compounds Pb2Sb2Te5, Pb2Bi2Te5, and Pb2Bi2Se5, which have a layered structure that consists of nine-layer atomic blocks separated by van der Waals gaps, has been theoretically studied. It has been shown that all studied compounds are three-dimensional topological insulators. The possibility of the existence of a two-dimensional topological insulator has been found in ultrathin (0001) Pb2Sb2Te5 and Pb2Bi2Te5 films. Oscillations of the ℤ2 topological invariant with an increase in the film thickness have been observed in the latter compound.  相似文献   

7.
First-principles full potential linearized augmented plane wave (FPLAPW) calculations have been performed to study the electronic structure and the magnetic properties of 3-Cyanobenzo-1,3,2-dithiazolyl,C7H3S2N2. The density of states (DOS), the total energy of the cell, and the spontaneous magnetic moment of C7H3S2N2 were all calculated. The calculations reveal that the low-temperature phase of the compound C7H3S2N2 has a stable metal-antiferromagnetic ground state, and there exists an antiferromagnetically coupled interactions between the dithiazolyl radical(1), which is in good agreement with experiment.  相似文献   

8.
On the basis of an ab initio computational study, the present work provide a full understanding on the atomic arrangements, phase stability as well as electronic structure of Si2Sb2Te5, a newly synthesized phase-change material. The results show that Si2Sb2Te5 tends to decompose into Si1Sb2Te4 or Si1Sb4Te7 or Sb2Te3, therefore, a nano-composite containing Si1Sb2Te4, Si1Sb4Te7 and Sb2Te3 may be self-generated from Si2Sb2Te5. Hence Si2Sb2Te5 based nano-composite is the real structure when Si2Sb2Te5 is used in electronic memory applications. The present results agree well with the recent experimental work.  相似文献   

9.
The electronic band structure of the chalcogenide spinels In2S3 and CdIn2S4 has been studied using the FEFF8 program. It is shown that the valence band top is formed by the S p states mixed with the In s and In p states for In2S3 or with the Cd s, Cd p, In s, and In p states for CdIn2S4. Compared to In2S3, the presence of Cd atoms in the nearest environment of S atoms in CdIn2S4 does not considerably affect the electronic band structure. In CdIn2S4 the Cd 4d states, as well as the In 4d states, form a narrow localized band shifted deep into the valence band. The theoretical results are in good agreement with the experimental x-ray photoelectron and x-ray spectra.  相似文献   

10.
The thermoelectric power of linear chain synthetic metals Nb3X4 (with X=S, Se and Te) was measured from 5 to 300 K. The thermopower is negative indicating a dominant transport by electrons. Common to three compounds, in lower temperature regions the thermopower rises linearly with temperature but soon saturates. With respect to Nb3S4 and Nb3Se4 we have found no special anomaly of the thermopower except for a little higher magnitude.With respect to Nb3Te4 anomalies in the thermopower vs temperature appear at about 80 and 20 K which are explained in terms of the charge- density-wave phase transition from the simultaneous measurement of the resistivity and the observation of the electron diffraction patterns.  相似文献   

11.
The galvanomagnetic properties of p-type bismuth telluride heteroepitaxial films grown by the hot wall epitaxy method on oriented muscovite mica substrates have been investigated. Quantum oscillations of the magnetoresistance associated with surface electronic states in three-dimensional topological insulators have been studied in strong magnetic fields ranging from 6 to 14 T at low temperatures. The cyclotron effective mass, charge carrier mobility, and parameters of the Fermi surface have been determined based on the results of analyzing the magnetoresistance oscillations. The dependences of the cross-sectional area of the Fermi surface S(k F), the wave vector k F, and the surface concentration of charge carriers n s on the frequency of magnetoresistance oscillations in p-type Bi2Te3 heteroepitaxial films have been obtained. The experimentally observed shift of the Landau level index is consistent with the value of the Berry phase, which is characteristic of topological surface states of Dirac fermions in the films. The properties of topological surface states of charge carriers in p-type Bi2Te3 films obtained by analyzing the magnetoresistance oscillations significantly expand fields of practical application and stimulate the investigation of transport properties of chalcogenide films.  相似文献   

12.
Transport parameters and optical properties of Bi2Te3?xSx single-crystals with x=0–0.18 were studied. With increasing sulphur content the concentration of free current carriers decreases up to x=0.12, due to the interaction of SxTe defects with antisite defects BiTe, and then the p-type conductivity changes to the n-type. The optical gap of Bi2Te3?xSx crystals increases with increasing S content. The obtained results led to the preparation of Bi2Te3-Bi2Te3?xSxpn junction by the heat treatment of p-type Bi2Te3 in S vapours.  相似文献   

13.
Pseudopotential calculations have been carried out for the α, β and γ polytypic forms of the layer semiconductor ZnIn2S4, respectively, corresponding to space groups C53v, C13v and D33d. The required form factors are consistent with those used in our previous calculations for ZnS and CdIn2S4. The band structure of the α phase, the only one up to now for which optical data are available, compares quite satisfyingly with very recent photoemission and reflectivity experimental data. The computed band structures of the β and γ phases are very alike; on the contrary, interesting differences exist between these structures and the α phase which could easily be verified by experimental investigations.  相似文献   

14.
Differential thermal analysis and X-ray diffraction studies of the system Ga2(SexTe1?x)3 are reported and correlated with measurements of the electrical conductivity in the liquid state. The experiments reveal that Ga2Te3 and Ga2Se3 do not form a continuous series of pseudo-binary solid solutions but exhibit solid state immiscibility in the range 0.50 ? x ? 0.90. The composition dependence of the conductivity of the liquid alloys exhibits structure in the range of the solid state phase separation. Such “memory” in the liquid of a solid phase separation has not been reported previously and suggests the importance of concentration fluctuations in determining the electronic properties of the liquid alloys.  相似文献   

15.
Trends of structural modifications and phase composition occurring in In4Se3 thin films and In4Se3-In4Te3 epitaxial heterojunctions under laser irradiations have been investigated. Dynamics of the layer structure modification, depending on laser modes, i.e. pulse duration τ = 2-4 ms, irradiation intensity I0 = 10-50 kW/cm2, number of pulses N = 5-50, was studied by electron microscopy. An increase in laser influence promotes enlargement of the layer grains and transformation of their polycrystalline structure towards higher degree of stoichiometry. As a result of laser solid restructuring heterojunctions of In4Se3-In4Te3, being photosensitive within 1.0-2.0 μm and showing fast time of response, have been obtained. Laser modification of structure enables one to optimize electrical and optical properties of functional elements on the base of thin films and layers of In4Se3, In4Te3, widely used as infrared detectors and filters.  相似文献   

16.
We present here a detailed study of electronic transport properties of the metallic-ferromagnetic compounds Cu1+xCr2Te4, having excess Cu atoms with x=0-1, from 2 to 400 K. The stuffing of the copper atoms in the parent structure reduces the ferromagnetic ordering temperature TC from 325 to 156 K, while for the entire range the dependence of the electrical resistance and the thermopower with temperature and the anomalies in them on the magnetic ordering remain similar. All the compounds show a magnon-drag contribution in thermopower as a positive maximum around TC/3, and a T2 - dependence of resistivity at low temperatures. The increasing effects of the short range magnetic ordering in the paramagnetic resistivity are seen with the increase in the stuffing of atoms in these compounds. The transport properties are explained by the current carriers —the holes in a wide energy band dominated by the p-state of Te-atoms, which are scattered by the spindisorder in the paramagnetic phase and from the magnons in the ferromagnetic phase.  相似文献   

17.
《Applied Surface Science》1986,27(3):275-284
The dissociation rates of H2, C2H4, C2H4, and NH3 have been studied on oxygen covered Pd surfaces by measuring the water desorption rates during exposure to each of the molecules. These results are correlated with the hydrogen response of a Pd-MOS structure. The measurements show a trend (at 473 K) where oxygen blocks H2 dissociation, blocks C2H4 dissociation only above a certain oxygen coverage, has no influence on C2H2 dissociation, and promotes NH3 dissociation.  相似文献   

18.
We report a comparative study of the electronic structure and magnetic properties of two cobalt compounds Co3O4 and Co3S4, through first-principles Hubbard-U calculations. Our results indicate that Co3O4 and Co3S4 have similarities in crystal structure (normal spinel), magnetic order (antiferromagnetism), Co spin configuration (high spin Co2+ and low spin Co3+), and comparable band-gap energy. However, the U-dependence on electronic structure in two materials are different from each other. With a change in the applied U values, the band dispersion and the type of band gap are significantly changed in Co3O4, while the band-gap energy only is affected in Co3S4.  相似文献   

19.
The influence of Si in Sb2Te3 on structure and phase stability was studied by experiments and ab initio calculations. With the increase of Si content in Sb2Te3 samples, the crystallization temperature increases and the crystalline grain size decreases. The incorporation of Si atoms into Sb2Te3 lattice is energetically unfavorable and hence Si atoms most probably accumulated in the boundaries of Sb2Te3 grains.  相似文献   

20.
Thermoelectric properties of single crystals of a new dilute magnetic semiconductor p-Sb2 ? x Cr x Te3 are studied in the temperature interval 7–300 K. The temperature dependences of the thermal conductivity are measured. The Seebeck coefficient S is found to increase upon doping with Cr. At low temperatures, a ferromagnetic phase with Curie temperature T C ≈ 5.8 K exists for a Cr concentration x = 0.0215, its easy magnetization axis being parallel to the crystallographic axis C 3. At T = 4.2 K, a negative magnetoresistance and anomalous Hall effect are observed; in strong magnetic fields, the Shubnikov-de Haas effect is manifested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号