首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用SEM、 XRD、 XPS、恒电流充放电等方法研究了不同量的氧化钛包覆对LiCo0.2Ni0.4Mn0.4O2结构和电化学性能的影响。结果表明,0.3mol%氧化钛包覆能显著改善LiCo0.2Ni0.4Mn0.4O2的循环性能、倍率放电能力及高截止电压(3.0~4.5 V)下的循环性。XPS数据表明氧化钛包覆能明显的抑制样品表面的氧化活性,从而减少了电极材料表面与电解液的反应,改善了LiCo0.2Ni0.4Mn0.4O2的电化学性能。  相似文献   

2.
以Mn(NO_3)_2、Fe(NO_3)_3·9H_2O、NH_4H_2PO_4、LiOH·H_2O为原材料,采用改进的溶胶凝胶法制备了具有高能量密度的Li Mn_(0.6)Fe_(0.4)PO_4/C材料。该方法通过金属和多种配体配位构筑的框架,把得到的一次纳米颗粒构筑为类球形的二次颗粒,即发挥了纳米材料优异的电化学性能,又提高了材料的压实密度,电池的能量密度可提升约30%。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、交流阻抗谱(EIS)、振实密度、粒度以及电化学测试等表征手段对材料的晶体结构、形貌和电化学性能进行了较系统的研究,结果表明此方法制备的LiMn_(0.6)Fe_(0.4)PO_4/C材料不仅具有较高的振实密度和电压平台,还具有优异的电化学性能:振实密度为1.3 g·cm~(-3),且在1C倍率下,放电中值电压为3.85 V,100次循环后,比容量仍有142.3 mAh·g~(-1),容量保持率为99.4%。  相似文献   

3.
富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2的表面包覆改性   总被引:1,自引:1,他引:0  
王洪  张伟德 《应用化学》2013,30(6):705-709
用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆。采用XRD、SEM和电化学测试等方法对样品进行表征。结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右。  相似文献   

4.
以Fe2O3为铁源原料, 利用热还原法成功地制备了LiFePO4/C复合材料. 用XRD以及SEM对材料的晶体结构以及表面形貌进行了表征. 通过循环伏安和充放电测试研究了材料的电化学性能. 研究结果表明, 于700 ℃下制备的LiFePO4/C复合材料在0.1C的倍率下可以得到放电容量144.8 mA·h/g, 在循环160次后, 容量仍保持在141.4 mA·h/g. 这种以廉价的Fe2O3代替目前常用的二价铁盐原料方法, 具有减少LiFePO4合成成本的优点.  相似文献   

5.
采用水热方法合成了掺铬锂锰氧化合物, X射线衍射和Raman光谱分析结果表明, 所得材料为具有NaFeO2结构的晶体. 由等离子发射光谱(CIP)确定其组分为Li1.06Mn0.8Cr0.14O2. X射线光电子能谱(XPS)研究结果表明, 与未掺杂的LiMnO2相比, 所得材料中Mn的平均价态增加, 这将抑制因Mn3+离子的存在而产生的Jahn-Teller畸变, 有利于提高材料的电化学循环性能.  相似文献   

6.
以提高锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2的循环性能为目的,以LiNO3和Al(OH)3为原料,采用固相反应法制备了α-LiAlO2包覆LiNi0.4Co0.2Mn0.4O2正极材料。微观组织结构分析结果表明,包覆热处理后LiNi0.4Co0.2Mn0.4O2颗粒表面形成了一层不均匀絮状包覆物α-LiAlO2。电化学测试表明,α-LiAlO2包覆处理有效减缓了充放电循环过程中总阻抗的增加,改善了材料的循环性能。3wt% LiAlO2包覆的正极材料在室温1C充放电循环100次后,平均每次衰减率由包覆前的0.19%下降到0.14%。  相似文献   

7.
采用浸渍法制备了不同载体(Ce0.6Zr0.4O2,CeO2和ZrO2)负载的Pt基水煤气变换反应(WGSR)催化剂, 并对其进行了活性评价. 利用X射线衍射(XRD), 程序升温还原(TPR)和原位电导等技术对样品进行了表征. 结果表明, Ce0.6Zr0.4O2固溶体具有比CeO2更高的氧转移能力, 因此促进了Pt/Ce0.6Zr0.4O2催化剂的WGSR活性.  相似文献   

8.
合成具有单相正交钙钛矿结构的La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4)系列样品, 碘量滴定法实验结果表明, 随着Sr掺入量的增加, Cu3+离子的含量逐渐增加. 电学性能研究结果表明, La0.7Sr0.3CuO3-δ电导率最高, 与La0.6Sr0.4CoO3-δ相比, La0.7Sr0.3CuO3-δ具有更好的电化学性能, 可作为一种新的中温固体氧化物燃料电池(IT-SOFC)阴极材料. 将La0.7Sr0.3CuO3-δ与不同质量比的中温电解质Ce0.85Sm0.15O2-δ(SDC) 固相混合, 制备复合阴极材料, 电化学性能测试结果表明, 掺入适量的SDC有利于降低La0.7Sr0.3CuO3-δ电极的极化, 获得性能更优越的IT-SOFC阴极材料, 提高在中温区单电池的输出功率.  相似文献   

9.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

10.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

11.
刘浩涵  张建  娄豫皖  夏保佳 《化学学报》2012,70(9):1055-1058
采用溶胶凝胶水解法在LiNi0.4Co0.2Mn0.4O2(NCM)表面包覆了0.5 wt%Al2O3.透射电镜(TEM)表明在NCM表面形成了均匀的Al2O3包覆层;分别采用恒电位极化及热重分析(TG)研究了包覆前后NCM的析氧特性;采用X射线吸收近边结构谱(XANES)研究了包覆前后O的电子结构.结果表明,包覆后的NCM析氧量更少;Al2O3包覆使得NCM表面层中与金属3d轨道杂化的O比例减少,而更稳定的、与金属4sp轨道杂化的O比例增加.这些因素导致Al2O3包覆后的NCM更加稳定、安全性更高.  相似文献   

12.
采用柠檬酸配合燃烧法和共沉淀法制备了MnOx(0.4)-CeO2催化剂,用于模拟碳烟的燃烧.通过XRD、BET、Raman、H2-TPR、O2-TPD与XPS表征催化剂的结构和表面活性物种,并借助原位拉曼研究碳烟的催化氧化机理.结果表明柠檬酸配合燃烧法制备的MnOx(0.4)-CeO2-CA催化剂中有更多的Mn进入了CeO2的立方萤石结构,比表面积更大,氧空位、Mn4+和Ce4+更多,因而氧化还原性能更好,催化氧化碳烟的活性更高.O-在碳烟的氧化中起重要作用,Mn4+和Ce4+有利于氧化反应的进行,氧空位的增加能提高氧的吸附、迁移和转化能力,促进了碳烟的氧化.反应路径为O-溢出参与碳烟的氧化,同时产生氧空位,部分晶格氧O2-补充O-,气相氧不断吸附到氧空位上得到活化生成O2-,O2-转化为O-(可进一步转化为O2-),O-迁移至碳烟颗粒表面参与反应,生成CO2.  相似文献   

13.
The additive of self‐terminated oligomers with hyper‐branched architecture (STOBA) in Li(Ni0.4Co0.2Mn0.4)O2 (LNCM) cathodes of lithium ion batteries improves the battery stability and capacity. In this study, the surface chemistry of pristine LNCM electrodes with and without the STOBA additive was analyzed by means of X‐ray photoelectron spectroscopy and the surface morphology was observed by scanning electron microscopy. It was found that STOBA covers LNCM particles uniformly and the formation of chemical bonding between nitrogen atoms in STOBA and metallic atoms in LNCM was discovered. This bonding may cause the uniform coverage of STOBA on LNCM. The formation of STOBA layer on LNCM improves the coverage of the binder poly(vinylidene fluoride) and inhibits the formation of LiF.  相似文献   

14.
Ti、Mg离子复合掺杂对LiNi0.4Co0.2Mn0.4O2性能的影响   总被引:2,自引:0,他引:2  
采用SEM、XRD、恒电流充放电、交流阻抗谱等方法研究了钛镁离子复合掺杂对LiNi0.4Co0.2Mn0.4O2的结构及其电化学性能的影响. 结果表明材料的XRD图谱中部分特征峰的强度比值有较大的变化. 1%(摩尔分数) 的Ti、Mg离子复合掺杂能显著地改善LiNi0.4Co0.2Mn0.4O2的倍率放电能力, 平台保持能力和高倍率下的循环性能. 交流阻抗谱表明钛镁离子掺杂抑制了LiNi0.4Co0.2Mn0.4O2在高放电倍率下循环的电化学反应阻抗Rct的增加. 采用几种不同价态的金属离子复合掺杂是改善嵌锂的镍钴锰系金属氧化物的倍率放电能力的有效途径.  相似文献   

15.
采用共沉淀-高温固相烧结法合成了富镍型三元复合正极材料LiNi0.5Co0.2Mn0.3O2.恒流充放电测试表明,材料在3.0~4.4 V下0.2C放电容量达到179.2 mAh.g-1,但在55℃下经历100次充放电循环后发生急剧的容量衰减.电化学交流阻抗谱、X射线光电子能谱和原子发射光谱等实验表明,在高温高电压下,电解液与LiNi0.5Co0.2Mn0.3O2电极材料之间的副反应加剧,导致过渡金属原子溶出,该材料局域结构被破坏.同时,电极材料表面还沉积了高阻抗的LiF/MFx层,使得在电极的充放电过程中电荷转移阻抗和Li+扩散阻抗不断增加,以致电池容量急剧衰减.  相似文献   

16.
袁荣忠  瞿美臻  于作龙 《电化学》2003,9(2):211-216
以LiOH·H2O,含镉球状Ni(OH)2和Co2O3为原料,采用改进固相反应法合成镍系复合氧化物LiaNi0.78Co0.2Cd0.02O2锂离子电池正极材料,并通过ICP_AES,XRD,SEM,TEM及电化学性能测试对该材料进行表征.实验表明,由Co和Cd部分取代Ni元素的复合正极材料LiaNi0.78Co0.2Cd0.02O2仍具有较完好的层状结构,表面分布均匀,颗粒粒径分布窄,且电化学性能稳定.常温下具有较高的可逆容量和优异的循环稳定性,其可逆容量最高达157.8mAh/g,循环50次后容量仍保持138.3mAh/g左右.  相似文献   

17.
LiNi_(0.8)Co_(0.2)O_2的络合法合成及其电化学性能研究   总被引:6,自引:0,他引:6  
采用络合法制备了锂离子电池的活性正极材料LiNi0.8Co0.2O2粉体,该合成材料结晶良好,层状结构发育完善.电池充放电测试表明,作为锂离子电池正极,其电化学性能与LiNi0.8Co0.2O2粉体的合成温度有关,其中以900℃下合成得到的材料性能最优:第1次放电比容量高达142mAh/g,循环30次后可逆比容量仍高达122mAh/g,容量损失为14.5%.文中对容量退化的原因进行了分析.  相似文献   

18.
Sm0.5Sr0.5Co0.4M0.6O3 (M=Co,Mn, Fe)作为IT-SOFCs阴极的结构与性能   总被引:1,自引:0,他引:1  
通过X射线衍射(XRD)、热重、热膨胀、电导率以及交流阻抗等测试方法, 研究了Sm0.5Sr0.5Co0.4M0.6O3(M=Co, Mn, Fe; 分别简写为SSCC, SSCM, SSCF)作为中低温固体氧化物燃料电池(IT-SOFCs)阴极的结构与性能. 研究表明, 固相法合成的Sm0.5Sr0.5Co0.4M0.6O3均为正交钙钛矿型结构, 材料的结构参数和性能都与M元素半径及M—O的键能有关. 晶胞参数随着Co、Mn、Fe的顺序增大.材料的氧空位浓度、热膨胀系数、电导率、电极催化活性随着Co、Fe、Mn的顺序降低. 同时由于SSCM较低的氧空位浓度, 使得电极反应受到氧在电极内的扩散过程控制, 具有较差的电极催化性能, 而SSCC和SSCF较高的氧空位浓度, 电极反应同时受到电极表面氧还原反应和氧离子在电极中的扩散过程混合控制. 由于SSCF具有较高的氧扩散系数, 使得700 ℃以上SSCF电极表面氧还原电阻(ASR)也低于SSCC的, 因而出现了SSCF的总电极催化活性高于SSCC的现象.  相似文献   

19.
The high capacity of Ni-rich Li[Ni(1-x)M(x)]O(2) (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni(0.5)Mn(0.5)]O(2) has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni(1-x)M(x)]O(2). We synthesized a spherical core-shell structure with a high capacity (from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core) and a good thermal stability (from the Li[Ni(0.5)Mn(0.5)]O(2) shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) as the core and a Li[Ni(0.5)Mn(0.5)]O(2) as the shell. A high capacity was delivered from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core, and a high thermal stability was achieved by the Li[Ni(0.5)Mn(0.5)]O(2) shell. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2)/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2) as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries.  相似文献   

20.
Layered mixed oxides LiNi(x)Co(y)Mn(1-x-y)O(2) (0 ≤x, y≤ 0.5) synthesized by a sol-gel method using tartaric acid as a chelating agent, and their structural and electrochemical properties are investigated by thermal analysis, XRD, SEM, FT-IR and XPS studies. The higher composition of Co leads to cation disorder and shrinks the cell volume. Electrochemical behaviour of the synthesized materials is evaluated by Galvanostatic charge/discharge studies using 2016 type coin cells. The cycling studies are carried out in the voltage limits of 2.7 to 4.6, 4.8 and 4.9 V at current rates of C/10 and C/5 respectively. The composition LiNi(0.4)Co(0.1)Mn(0.5)O(2) exhibits an average discharge capacity of 192 mA h g(-1) at the current density of 0.612 mA cm(-2) (C/5) in the voltage range of 2.7-4.9 V as compared to the discharge capacity of 155 and 175 mA h g(-1) in the potential range of 2.7-4.6 and 2.7-4.8 V over the 50 investigated cycles. The effect of higher charge voltage at 4.9 V on the electrochemical performance of LiNi(x)Co(y)Mn(1-x-y)O(2) oxide materials has not previously been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号