首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
静电纺丝制备超疏水TiO2纳米纤维网膜   总被引:4,自引:1,他引:3  
采用静电纺丝技术构筑粗糙表面, 再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰, 制备出接触角大于150°, 滚动角小于5°的TiO2超疏水表面. 该超疏水表面具有由TiO2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构, 这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致TiO2纳米纤维网膜的超疏水性. 这种超疏水的TiO2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.  相似文献   

2.
TiO_2纳米粒子的表面修饰研究   总被引:1,自引:0,他引:1  
利用表面修饰法合成了油酸 (OA)修饰的TiO2 纳米粒子 ,采用红外光谱 (IR)、透射电子显微镜 (TEM)和X射线光电子能谱 (XPS)对表面修饰的TiO2 纳米粒子进行了结构表征 ,并研究了油酸浓度对TiO2 表面覆盖量及在油中分散性能的影响 .研究结果表明通过油酸表面修饰 ,成功合成了具有油分散性能的纳米TiO2 ,并且获得了油酸修饰量与TiO2 的最佳配比 .  相似文献   

3.
二氧化钛/聚乙烯吡咯烷酮纳米复合薄膜的制备与表征   总被引:5,自引:0,他引:5  
采用溶胶-凝胶法(so1 gel)制备了TiO2/聚乙烯吡咯烷酮(PVP)有机 无机纳米复合薄膜.采用扫描电子显微镜、接触角测定仪、红外光谱仪、紫外 可见吸收光谱仪和静 动摩擦系数测定仪对所制备的TiO2/PVP纳米复合薄膜进行了结构表征和性能研究.结果表明:所制备的TiO2/PVP纳米复合薄膜表面平整光滑、无裂纹、具有一定的疏水性、良好的透明性、防紫外线性能和减摩抗磨性能.  相似文献   

4.
选用有机硅烷KH570(γ-甲基丙烯酰氧基丙基三甲氧基硅烷)作为修饰剂,分别采用液相修饰和气相修饰这两种方法制备SiO_2改性薄膜,并对比两种方法对薄膜成分、结构、耐潮湿性能的影响。结果表明,经KH570气相处理和液相修饰后,薄膜表面结构均变得更加致密;水接触角从38°分别增大至86°和99°;在高湿度环境中放置60 d后薄膜的峰值透过率分别下降0.02%和0.01%。改性薄膜表面接触角均未达到超疏水程度却仍然具有良好的耐潮湿性能,这一结果表明,薄膜的耐潮湿性能并不单纯取决于薄膜表面疏水角的大小,而是同时受到薄膜的表面结构和组成成分的综合影响。  相似文献   

5.
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于TiO2纳米结构薄膜内部,其深度超过580 nm.X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.  相似文献   

6.
使用TiCl4溶液对单晶TiO2纳米棒阵列(TNRs)进行修饰,通过在TiO2纳米棒表面合成TiO2纳米颗粒来提高TNRs的表面积,提高TNRs对量子点的吸附能力,并在此基础上研究了TiCl4修饰时间对基于单晶TNRs的CdS/CdSe量子点敏化太阳电池光伏性能的影响,同时结合强度调制光电流谱(IMPS)研究了TiO2纳米棒阵列的电子传输性能.结果表明:TiCl4修饰可以大幅提高基于单晶TNRs的CdS/CdSe量子点敏化太阳电池的光伏性能,在TiCl4修饰时间为60 h时,其短路电流密度和光电转换效率分别由修饰前的(2.93±0.07)mA·cm-2和0.36%±0.02%提高至(8.19±0.12)mA·cm-2和1.17%±0.07%.同时,IMPS测试表明电子在单晶TiO2纳米棒阵列中的传输速率高于在TiO2纳米颗粒薄膜中的传输速率,证明了单晶TiO2纳米棒阵列在电子传输方面的优越性.  相似文献   

7.
溶胶凝胶法制备仿生超疏水性薄膜   总被引:15,自引:0,他引:15  
郭志光  周峰  刘维民 《化学学报》2006,64(8):761-766
通过溶胶-凝胶(Sol-Gel)法和自组装(Self-assembled)制备了具有超疏水性的薄膜, 水滴在该薄膜上的平衡静态接触角为155°~157°, 滑动角为3°~5°. 通过扫描电子显微镜(SEM)观察薄膜微观表面, 发现该薄膜表面分布了双层结构(Binary structure)的微纳米粗糙度的微凸体, 上表层微米微凸体的平均直径为0. 2 μm, 下表层纳米微凸体的平均直径约为13 nm, 其分布与荷叶表面的结构极其相似. 用X射线光电子能谱(XPS)对薄膜表面元素进行了成分分析, 结果表明, 其表面存在大量的F, Cl等元素, 它能显著降低薄膜表面的表面能. 薄膜超疏水性的原因可能是, 通过硅片经溶胶粒子表面制备的薄膜具有合适的表面粗糙度, 再经过全氟辛基三氯甲硅烷(FOTMS)化学修饰后, 薄膜表面能进一步降低, 这两个条件的有机结合就使得薄膜产生了超疏水性.  相似文献   

8.
微结构与表面修饰对二氧化硅多孔薄膜疏水性能的影响   总被引:1,自引:0,他引:1  
通过引入聚乙二醇(PEG)改性传统二氧化硅(SiO2)溶胶,得到了粒径分布较宽且粒径可控的溶胶。比较了六甲基二硅氮烷(HMDS)溶胶内修饰和薄膜表面修饰以及溶胶粒径对SiO2薄膜疏水性能的影响。采用动态光散射粒度仪定量测试了二氧化硅溶胶老化过程中粒度的变化,用原子力显微镜、接触角测试仪、红外光谱仪、紫外-可见-近红外分光光度计分别对薄膜的表面形貌、表观静态接触角、薄膜成分及透光率等进行了测量。结果表明:PEG的添加可有效增大溶胶粒度从而增大薄膜的粗糙度,提高薄膜的疏水性。表面修饰效果受修饰方式和SiO2粒径影响,粒径较小时有利于溶胶内修饰,粒径较大时有利于对薄膜修饰。经过表面修饰剂(HMDS)的气氛处理得到了接触角为152°的超疏水薄膜,而且相比溶胶内修饰可以减小薄膜透光率的损失。  相似文献   

9.
研究了Ho3+离子表面修饰对TiO2纳米晶电极光电性能的影响. TiO2表面氧化钬的存在一方面降低了染料和TiO2之间的电子注入速率, 而另一方面它也能够抑制电荷复合. 结果表明, 在TiO2纳米晶薄膜表面修饰一定厚度的Ho3+离子层, 在电极表面就形成了一个势垒, 能够有效抑制电极表面的电荷复合, 从而提高了染料敏化太阳能电池的光电压和光电转化效率. 在93.1 mW·cm-2白光照射下, TiO2/Ho-0.1 和TiO2/Ho-0.2(0.1 和0.2分别是修饰TiO2电极的Ho3+溶液的浓度, 单位是mol·L-1)两个电极的光电转化效率分别达到8.3%和7.6%, 与TiO2电极(7.2%)比较, 分别增大了15%和5%.  相似文献   

10.
研究了Ho3+离子表面修饰对TiO2纳米晶电极光电性能的影响.TiO2表面氧化钬的存在一方而降低了染料和TiO2之间的电子注入速率,而另一方面它也能够抑制电荷复合.结果表明,在TiO2纳米晶薄膜表面修饰一定厚度的HO3+离子层,在电极表面就形成了一个势垒,能够有效抑制电极表面的电荷复合,从而提高了染料敏化太阳能电池的光电压和光电转化效率.在93.1 mW·cm-2白光照射下,TiO2/Ho-0.1和TiO2/Ho-0.2(0.1和0.2分别是修饰TjO2电极的Ho3+液的浓度,单位是mol·L-1)两个电极的光电转化效率分别达到8.3%和7.6%,与TiO2电极(7.2%)比较,分别增大了15%和5%.  相似文献   

11.
Liu  W. L.  Wang  L.  Zhang  L. D.  Xu  W. H.  Chen  S. H.  Wang  X. Q.  Duan  X. L. 《Journal of Sol-Gel Science and Technology》2012,62(3):424-431

Abstract  

The organic–inorganic nanocomposite films were fabricated by grafting polystyrene (PS) onto the vinyltriethoxysilane (VTEOS) modified titanium dioxide nanopowders using free radical polymerization. The composition of the surfaces and the structure for the PS grafted titania (PS-g-TiO2) were examined by infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis, and the rough surface was confirmed by the evaluation of the morphological characteristics of the coating using hybrid particles. The wetting properties of the VTEOS modified titania and PS-g-TiO2 films were investigated, which show the maximum static water contact angles of 160° and 154°, and minimum sliding angles of 3° and 4°, respectively.  相似文献   

12.
Alkyl- and perfluoro-phosphonic acid derived SAMs were successfully formed on Mg alloy by liquid phase method for the first time. The chemical and anticorrosive properties of the prepared SAMs on magnesium alloys were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and electrochemical measurements. Water contact angle measurements revealed that the maximum advancing/receding water contact angles of n-octyl (OP: CH(3)(CH(2))(7)PO(OH)(2)), n-dodecyl (DP: CH(3)(CH(2))(11)PO(OH)(2)), n-octadecyl (ODP: CH(3)(CH(2))(17)PO(OH)(2)) phosphonic acid, and 2-(perfluorohexyl)ethyl (PFEP: CF(3)(CF(2))(5)CH(2)CH(2)PO(OH)(2)) phosphonic acid were 105.1/64.7°, 108.3/69.6°, 111.9/75.2°, and 115.2/67.4° respectively. In the case of alkylphosphonic acid SAMs (OP, DP, and ODP), the advancing and receding water contact angles increased with an increase in the preparation time. The angle-resolved XPS (AR-XPS) data revealed that the film thicknesses of the OP, DP, ODP, PFEP on Mg alloy were estimated to be 0.8, 1.2, 1.7, and 1.1 nm, respectively. The XPS O 1s data support that the phosphonic acid derived SAM is covalently bound to the oxide or hydroxide surface of the Mg alloy in a monodenate or bidenate manner. Chemical stability of the alkyl- and perfluoro-phosphonic acid modified Mg alloy surfaces was investigated using aqueous solutions at pH=4.0, 7.0, and 10.0. The contact angles of OP, DP, and PFEP modified Mg surface decreased rapidly within the first 5 min after immersion in all the aqueous solutions and were less than 20°. On the other hand, the contact angles of the ODP modified Mg alloy after immersion in aqueous solutions at pH 4, 7 and 10 for 5 min were 45.1°, 89.3,° and 85.5°, respectively. The ODP modified Mg alloy had highest chemical stability in four types of the phosphonic acid derived SAMs used in this study, indicating that the molecular density of ODP on Mg alloy would be higher than those of OP, DP, PFEP on Mg alloy. The corrosion resistance of ODP modified Mg alloy was investigated by potentiodynamic polarization curve measurements. The ODP modified Mg alloy exhibits protective properties in a solution containing Cl(-) ions compared to unmodified Mg alloy.  相似文献   

13.
Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.  相似文献   

14.
Thin films of titanium arsenide have been deposited from the atmospheric pressure chemical vapour deposition (APCVD) of [Ti(NMe(2))(4)] and (t)BuAsH(2) at substrate temperatures between 350-550 °C. Highly reflective, silver coloured films were obtained which showed borderline metallic-semiconductor resistivities. The titanium arsenide films were analyzed by scanning electron microscopy (SEM), Raman spectroscopy, wavelength dispersive analysis of X-rays (WDX), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The films showed variable titanium to arsenic ratios but at substrate temperatures of 500 and 550 °C films with a 1 : 1 ratio of Ti : As, consistent with the composition TiAs, were deposited. Powder XRD showed that all of the films were crystalline and consistent with the formation of TiAs. Both nitrogen and carbon contamination of the films were negligible.  相似文献   

15.
Textured surfaces consisting of nanometer- to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution-cast onto silica. The particle textured ionomer surfaces were prepared by either spin-coating or solution-casting ionomer solutions at controlled evaporation rates. The effects of the solvent used to spin-coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation on the surface morphology of cast films were investigated. The surface morphologies were consistent with a spinodal decomposition mechanism, where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted separation from the surface even after annealing at 120 °C for 1 week. The water contact angles on as-prepared surfaces were relatively low, ~90°, due to the polar groups in the ionomer, but when the surface was modified by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~109° on smooth surfaces and up to ~140° on the textured surfaces. Although the surfaces were hydrophobic, the contact angle hysteresis was relatively high and water droplets stuck to these surfaces even when the surface was turned upside down.  相似文献   

16.
Ordered, hierarchical (triple-scale), superhydrophobic, oleophobic, superoleophobic, and amphiphilic surfaces on poly(methyl methacrylate) PMMA polymer substrates are fabricated using polystyrene (PS) microparticle colloidal lithography, followed by oxygen plasma etching-nanotexturing (for amphiphilic surfaces) and optional subsequent fluorocarbon plasma deposition (for amphiphobic surfaces). The PS colloidal microparticles were assembled by spin-coating. After etching/nanotexturing, the PMMA plates are amphiphilic and exhibit hierarchical (triple-scale) roughness with microscale ordered columns, and dual-scale (hundred nano/ten nano meter) nanoscale texture on the particles (top of the column) and on the etched PMMA surface. The spacing, diameter, height, and reentrant profile of the microcolumns are controlled with the etching process. Following the design requirements for superamphiphobic surfaces, we demonstrate enhancement of both hydrophobicity and oleophobicity as a result of hierarchical (triple-scale) and re-entrant topography. After fluorocarbon film deposition, we demonstrate superhydrophobic surfaces (contact angle for water 168°, compared to 110° for a flat surface), as well as superoleophobic surfaces (153° for diiodomethane, compared to 80° for a flat surface).  相似文献   

17.
The superhydrophobic surface has been designed by the synthesis of carbon nanotubes (CNTs) on Ti-containing mesoporous silica thin films (Ti-MSTFs) with Co-Mo binary nanocatalysts. The active Co-Mo catalysts have been successfully deposited on Ti-MSTFs under microwave irradiation. SEM and TEM observations after CNT synthesis revealed that surfaces of Ti-MSTFs were densely covered with CNTs having a diameter of 15 nm. Raman spectra indicated that the undesired structural defects in the carbon network of the synthesized CNTs, which would lead to the formation of hydroxyl groups, were scarce. Interestingly, hydrophobic properties of samples after CNT synthesis were enhanced with increasing titanium concentration of Ti-MSTF, and the water contact angle reached up to 165° on Ti-MSTF with a titanium concentration of 10 at%. The combination of dispersed titanium oxide moieties within the silica frameworks and the microwave irradiation made a great contribution to deposit active Co-Mo catalysts responsible for the formation of well-dense CNTs.  相似文献   

18.
With the expanding application of capacitors, thermal resistant dielectric materials are in high demand due to the increasing harsh environments where the capacitors are needed and the heat generated by the capacitors. Herein, we present polyarylene ether nitrile and titanium dioxide hybrids which can be used as thermal resistant dielectrics for these capacitors. Phthalonitrile modified titanium dioxide (TiO_2-CN) and phthalonitrile end-capped polyarylene ether nitrile (PEN-Ph) are firstly prepared. After being cast into TiO_2-CN/PEN nanocomposite films,these composites self-crosslink upon heating at 320℃ for 4 h, forming the polyarylene ether nitrile and titanium dioxide hybrids (TiO_2-PEN).Improved dielectric constants which are stable from room temperature to 200℃ of these hybrids are observed, indicating the potential application of the hybrids as thermal resistant dielectrics.  相似文献   

19.
A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity.  相似文献   

20.
Polystyrene (PS) spin coated thin films were modified by O2 and Ar plasma as well as by UV irradiation treatments. The modified PS samples were compared with plasma polymerized and commercial polystyrene. The effects of plasma (O2 and Ar) and UV irradiation treatments on the surface and the bulk properties of the polymer layers were discussed. The surface properties were evaluated by X-ray Photoelectron Spectroscopy and Contact angle measurements and the bulk properties were investigated by FTIR and dielectric relaxation spectroscopy. As a result only one second treatment time was sufficient to modify the surface. However, this study was also dedicated to understand the effect of plasma and plasma irradiation on the deposited layers of plasma polymers. The dielectric measurements showed that the plasma deposited films were not thermally stable and underwent an undesired post-plasma chemical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号