首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
磁性纳米颗粒Fe3O4固定化纤维素酶的光谱学研究   总被引:1,自引:0,他引:1  
以氨水作沉淀剂,用共沉淀法制备了磁性纳米颗粒Fe3O4,并以此为载体,通过碳化二亚胺的活化作用将纤维素酶固定化,通过傅里叶红外和重复多次催化实验证实纤维素酶在磁性纳米颗粒上的固定,透射电镜表征了固定化酶微粒的形貌.用DNS分光光度法测定固定化纤维素酶的活性,研究表明磁性固定化酶的催化作用的最适温度为60℃和pH值为3.94~5.50.结果表明,磁性固定化纤维素酶具有比自由酶更好的热稳定性,贮存稳定性和更广泛的pH值适用范围,为纤维素的转化和利用效率的提高提供了理论基础.  相似文献   

2.
蔡力锋  林旺  胡小琼  陈斌 《光谱实验室》2010,27(4):1260-1263
采用共沉淀法制备了磁性四氧化三铁(Fe3O4)纳米粒子,并通过硅烷偶联剂对其表面进行改性,进一步在其表面偶联修饰氨基硫脲,制备了螯合磁性纳米Fe3O4粒子。利用广角X射线衍射仪(WAXD)、红外光谱仪(FTIR)、分光光度计等对磁性纳米粒子的结构和性能进行了表征。结果表明,纳米Fe3O4为反尖晶石结构,通过偶联修饰可以实现氨基硫脲在纳米粒子表面的化学改性。螯合磁性纳米粒子具有良好的分散性和磁响应性,且对多种金属离子(Pb2+、Hg2+、Zn2+、Cd2+)具有良好的螯合效果。  相似文献   

3.
氨水-Fe2O3纳米流体稳定性影响因素分析   总被引:1,自引:0,他引:1  
为了将纳米颗粒的强化传热传质作用应用于氨水吸收制冷中,提出了在氨水溶液中添加Fe203纳米颗粒和表面活性剂十二烷基苯磺酸纳(SDBS)的纳米流体的配制方法,并通过沉降试验和吸光度测试方法对其稳定性进行了实验研究。研究了活性剂质量分数、超声分散时间和氨水浓度对稳定性的影响,确定了Fe2O3-氨水纳米流体分散的最佳工艺为:...  相似文献   

4.
纳米磁性功能材料   总被引:2,自引:0,他引:2  
 (一)纳米磁性和介观磁性从本世纪初起,物理学发展的一个重要特点是从经典物理学发展到量子物理学,从宏观物质的研究发展到微观物质和微观结构的研究.  相似文献   

5.
本文主要从网络课程的设计方案、功能实现方式两方面对如何建设,怎样建设纳米磁性液体网络课程和如何改变纳米磁性液体教学模式进行探讨。  相似文献   

6.
通过水热和热处理的方法,制备了产物Co3O4纳米花. 用X射线粉末衍射、场发射扫锚电镜、透射电镜和红外光谱等手段对产物进行了表征. 结果表明,产物纳米花是由大量的Co3O4纳米须组成,纳 米须的直径为20?40 nm,长度为100?500 nm,具有纳米孔结构,比表面积约为34.61 m2/g. 磁性测量表明,在零场冷却条件下,产物主要表现为反铁磁性;在加场冷却条件下,闭锁温度约为34K时,产物主要表现为铁磁性.  相似文献   

7.
通过两步法制备了不同体积浓度的γ-Al_2O_3纳米流体,并添加不同质量分数的十二烷基苯磺酸钠(SDS)和聚乙烯吡咯烷酮(PVP)作为分散剂。分析了温度以及两种表面活性剂对γ-Al_2O_3纳米流体稳定性和导热系数的影响。试验结果表明,非离子型表面活性剂PVP比阴离子表面活性剂SDS具有更好的分散效果。随着表面活性剂浓度的增加,纳米流体的导热系数呈先增加后减小的趋势,适当的粒子浓度与活性剂浓度比例有利于提高纳米流体的导热系数。  相似文献   

8.
邓海东  李海 《物理学报》2013,62(12):127501-127501
利用磁性液体与聚苯乙烯小球溶液混合得到的复合磁性液体, 研究了聚苯乙烯小球和磁性纳米颗粒在外加磁场作用下的动力学过程. 实验结果表明, 当外加磁场的方向平行于样品平面时, 聚苯乙烯小球在沿着磁场的方向上表现出相互吸引而形成链状结构, 其动力学过程可分为聚苯乙烯小球被反磁化产生相互吸引而形成短链的快过程以及短链间相互吸引形成长链的慢过程; 当外加磁场的方向垂直于样品平面时, 相邻聚苯乙烯小球表现出排斥的相互作用而形成短程有序的二维结构, 当磁场强度增加到一定的阈值时, 聚苯乙烯小球和磁性纳米颗粒形成的团簇会产生相互吸引而组装成复合式的花瓣结构. 关键词: 磁性液体 磁组装 非磁性颗粒  相似文献   

9.
采用共沉淀法制备了Fe3O4纳米颗粒,并以之为原料利用晶种生长法进一步制备Fe3O4@ Ag复合纳米材料.利用紫外-可见吸收光谱和表面增强拉曼散射光谱对复合纳米材料的性能进行表征,显示Fe3O4@ Ag复合纳米材料具有良好的SERS活性.  相似文献   

10.
磁性纳米级Fe3O4的氧气诱导、空气氧化液相合成与表征   总被引:13,自引:0,他引:13  
氧气诱导、空气氧化液相合成出了粒径为20nm左右的磁性粉体Fe3O4。由X-ray衍射,红外光谱(IR)、透射电镜(TEM)及磁滞回线方法表征了粒子的结构组成。  相似文献   

11.
Fe3O4磁性纳米颗粒的催化性能研究进展   总被引:1,自引:0,他引:1  
刘文  魏志鹏  郑龙珍 《光谱实验室》2012,29(4):1956-1959
综述了国内外这一领域科研工作者的研究成果,以紫外光谱(UV)和电化学传感器为主要手段阐述了Fe3O4MNPs对H2O2的催化作用并对Fe3O4MNPs利用其催化性质在H2O2的检测领域的进一步发展和应用进行了展望。  相似文献   

12.
以共沉淀法合成Fe3O4纳米颗粒,再通过柠檬酸三钠还原AgNO3制备Fe3O4/Ag磁性复合材料。Fe3O4/Ag能够与溶液中的丙线磷形成吸附,通过磁性收集达到萃取富集的效果。测定吸附于Fe3O4/Ag表面的痕量丙线磷所产生的表面增强拉曼光谱(SERS),其检测过程的拉曼增强因子为1.48×105,极大地提高了检测灵敏度,建立了磁性Fe3O4/Ag萃取富集与SERS分析农药丙线磷的方法。采用紫外可见吸收光谱、能谱及透射电子显微镜对制备的材料进行了分析及形貌与结构的表征。并对丙线磷模型分子进行结构优化的密度泛函理论计算,得到了理论拉曼光谱和谱峰归属,以用于丙线磷的判断。结果表明,SERS峰强在富集15min后基本趋于稳定,其丙线磷浓度低至2×10-8 mol·L-1仍有明显响应,可以满足丙线磷农残检测的要求。其方法可推广至含硫有机磷农药残留的分析。  相似文献   

13.
SO2-4/Fe2O3-Al2O3纳米固体酸的红外光谱研究   总被引:1,自引:0,他引:1  
用IR光谱研究了SO4^2-/Fe2O3-Al2O3纳米固体酸在不同焙烧温度下表面结构与酸性的变化,结果表明,当焙烧温度在450-500℃时,双齿螯合配位结构特征谱带齐全,酸性强,小于450℃时,双齿螯合配位特征谱带不齐全,酸性不强,而大于500℃时,随着温度的升高,特性谱带区域宽化,特征峰消失,酸性变弱。此外,从Fe-O纳米颗粒的特征振动带显示可得知,样品的粒径小于30nm。  相似文献   

14.
采用共沉淀法和溶剂热法制备了不同尺寸的Fe_3O_4纳米粒子,通过Stber法和溶胶-凝胶法在Fe_3O_4磁核上包覆SiO_2和Ti O2壳层获得不同尺寸的Fe_3O_4@SiO_2@Ti O2复合纳米结构.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和振动样品磁强计(VSM)等对其结构、形貌和磁性进行了研究.结果表明,大尺寸复合纳米粒子包覆均匀,分散性好,饱和磁化强度较大,有利于TiO_2光催化剂的磁回收与再利用.  相似文献   

15.
采用共沉淀法和溶剂热法制备了不同尺寸的Fe3O4纳米粒子,通过Stöber法和溶胶-凝胶法在Fe3O4磁核上包覆SiO2和TiO2壳层获得不同尺寸的Fe3O4@SiO2@TiO2复合纳米结构.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和振动样品磁强计(VSM)等对其结构、形貌和磁性进行了研究.结果表明,大尺寸复合纳米粒子包覆均匀,分散性好,饱和磁化强度较大,有利于TiO2光催化剂的磁回收与再利用.  相似文献   

16.
采用共沉淀法合成了Fe_3O_4磁性纳米颗粒,进一步以柠檬酸三钠还原法制备出了具有SERS活性的Fe_3O_4/Ag磁性包覆修饰材料,用紫外可见吸收光谱、能谱及透射电镜对结构与形貌进行表征,发现所制备的Fe_3O_4/Ag纳米材料粒径约为30~60nm,形貌规整接近球形,经测试Fe_3O_4/Ag材料很容易被磁铁收集,能够满足分散萃取再收集的需要。根据密度泛函理论(DFT)对杀线威(Oxamyl)、Oxamyl-Ag和OxamylAg4进行了理论结构优化计算,得到了杀线威的理论拉曼光谱和与Ag表面增强拉曼光谱及其谱峰的归属,结合表面增强拉曼光谱(SERS)测定,研究了杀线威在Fe_3O_4/Ag表面的吸附行为和增强效应,测算得到杀线威在Fe_3O_4/Ag表面上的增强因子为2.08×105。研究表明:理论计算的杀线威拉曼光谱与测定的拉曼光谱具有较好的一致性,DFT理论计算中发现研究分子与活性Ag原子作用越多,与实测值常规拉曼NRS越接近;杀线威以双键侧N原子和S原子与Fe_3O_4/Ag表面吸附作用为主;双键侧N优先与Ag吸附成键后,整个分子靠近Ag表面,最终使得双键侧N原子与S原子共同吸附在Ag表面;Fe_3O_4/Ag磁性纳米复合材料具有显著的富集吸附和拉曼增强作用;可利用其作为拉曼基底,以实现SERS光谱法对杀线威农残的快速分析检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号