首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inclusion compound of macrocyclic cavitand cucurbit[8]uril (CB[8]) with the nickel(II) complex containing the tetraazamacrocyclic ligand cyclam, {[Ni(cyclam)]@CB[8]}Cl2··16H2O (1), and the inclusion compounds of CB[8] with the copper(II) bis-ethylene-diamine complex, {trans-[Cu(en)2(H2O)2]@CB[8]}Cl2·{CB[8]}·42H2O (2a) and {trans-[Cu(en)2(H2O)2]@CB[8]}Cl2·17H2O (2b), were synthesized and characterized by X-ray diffraction analysis, IR and ESR spectroscopy, and electrospray mass spectrometry. Guest—host inclusion compounds can be directly synthesized starting from a metal complex and cucurbit[8]uril, as was exemplified by the preparation of compounds 2a and 2b.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2414–2419, November, 2004.  相似文献   

2.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the ruthenium(iii) bis(ethylenediamine) complex {trans-[Ru(en)2Cl2]@CB[8]}Cl·27.5H2O (1), the gold(iii) diethylenetriamine complex {[Au(dien)Cl]@CB[8]}Cl2·11H2O (2), and the gold(iii) and platinum(ii) cyclam complexes (H3O)5{[Au(cyclam)]@CB[8]}Cl8·18H2O (3) and {[Pt(cyclam)]0.11(H2cyclam)0.89@CB[8]}Cl2·16H2O (4), respectively, where cyclam is the tetraazamacrocyclic ligand, were synthesized. The inclusion compounds were synthesized both directly starting from CB[8] and the metal complexes with polyamines (en or dien) and by the two-step method with the use of the cyclic polyamine ligand (cyclam) pre-included into the cavity of the macrocycle. The inclusion compounds were characterized by X-ray diffraction (1, 2, and 4), IR spectroscopy, electrospray ionization mass spectrometry, UV-Vis spectroscopy, and thermogravimetric analysis.  相似文献   

3.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the nickel(II) complex, {trans-[Ni(en)2(H2O)2]@CB[8]}Cl2 · 23.5H2O, the copper(II) complex, {2[Cu(dien)(bipy)(H2O)]@CB[8]}(ClO4)4 · 11H2O, and the organic molecules, 2(pyCN)@CB[8]} · 16H2O and {2(bpe)@CB[8]} · 17H2O, where bipy is 4,4′-bipyridyl, pyCN is 4-cyanopyridine, and bpe is trans-1,2-bis(4-pyridyl)ethylene, were synthesized. The inclusion compounds with organic molecules were synthesized starting from inclusion compounds of cucurbit[8]uril with cyclam and ethylenediamine complexes of copper(II) and nickel(II) by the guest exchange method, which is based on the replacement of one guest with another in the cavity of the cavitand The resulting compounds were characterized by X-ray diffraction, ESR, 1H NMR, IR, and electronic absorption spectroscopy, and electrospray mass spectrometry. Photochemically induced [2+2]-cycloaddition of two 1,2-bis(4-pyridyl)ethylene molecules included in cucurbit[8]uril was studied. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 25–34, January, 2006.  相似文献   

4.
New inclusion compounds containing iron(II), cobalt(III), and nickel(II) complexes with the cyclic polyamine ligands cyclam and cyclen in the macrocyclic cavitand cucurbit[8]uril (CB[8]) were obtained: {trans-[Fe(Cyclam)(CO)(OCHO)]@CB[8]}Cl · 15H2O, {cis-[Co(Cyclen)(H2O)Cl]@CB[8]}Cl2 · 20H2O, and {cis-[Ni(Cyclen)(H2O)Cl]@CB[8]}Cl · 12H2O. According to X-ray diffraction data, the complexes are in the cavity of each CB[8] molecule. The complexes of the above molecular formulas were isolated in the solid state as supramolecular compounds with CB[8] and structurally characterized for the first time.  相似文献   

5.
Composition and thermodynamic stability of complexes of 1-[5-(hydrazidomethylsulfinyl)pentyl]-3,5-dimethylisocyanurate with cobalt(ii), nickel(ii), and iron(iii) in H2O—DMSO medium (60 vol.% DMSO) was studied by spectrophotometry, potentiometric titration, and mathematical modeling (CPESSP program). The geometries of all studied structures were optimized by the MM2 molecular mechanics method to obtain the primary target data (estimates) on coordination pattern of 1-[5-(hydrazidomethylsulfinyl)pentyl]-3,5-dimethylisocyanurate in complexes with cobalt(ii), nickel(ii), and iron(iii). Cobalt(ii) and nickel(ii) formed the 1 : 1 complexes; while iron(iii) under experimental conditions excluding redox reactions gave the 1 : 1 and 1 : 2 complexes. All complexes contain ligands in neutral form.  相似文献   

6.
Solvothermal synthesis method has been successfully introduced into the diphosphine carborane system, and two new nickel complexes containing nido-carborane diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] with the formula [Ni2(μ-Cl)(μ-OOPPh2){7,8-(PPh2)2-7,8-C2B9H10}2]·CH2Cl2 (1) and [H3O][NiBr2] {7,8-(PPh2)2-7,8-C2B9H10}·C6H6 (2) were obtained by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with NiCl2·6H2O or NiBr2·6H2O in CH2Cl2 under the solvothermal condition. Both of the two complexes have been characterized by the elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and single crystal X-ray diffraction. The X-ray structure analysis for these two complexes reveals the nido-nature of the carborane diphosphine ligand, indicating that the solvothermal synthesis is an efficient method for the degradation of the closo-carborane diphosphine ligand.  相似文献   

7.
Ionic mobility in the NaSbClF3 · H2O, KSbClF3, and NH4SbClF3 fluorochloride complexes was studied by 1H and 19F NMR spectroscopy in the temperature interval from 150 to 480 K. The types of ionic motions in the compounds were determined. Their physicochemical characteristics were compared with those of the earlier studied sodium, potassium, and ammonium tetrafluoroantimonates(iii). The replacement of one F atom by the Cl atom in MSbF4 (M = Na, K, NH4) changes both the structure of the Sb polyhedra forming the structure of the antimony(iii) fluorochloride complex and the character of ionic motions in the compounds. The ionic conductivity in the 324–436 K range was determined for NH4SbClF3: σ = 1.07 · 10−4 S cm−1 at T = 423 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1353–1357, July, 2008.  相似文献   

8.
Reactions of the platinum(IV) nitrile complexes [PtCl4(RCN)2] (R = Me, CH2Ph, Ph) with 1,2- and 1,4-PhS(=NH)C6H4SPh in CH2Cl2 afforded addition products of sulfimides and coordinated nitriles, viz., the [PtCl4{NH=C(R)N=S(Ph)(C6H4SPh)}2] complexes. The latter were isolated in 75—90% yields and characterized by elemental analysis, positive-ion FAB mass spectrometry, IR spectroscopy, and 1H and 13C1H NMR spectroscopy. The temperature dependence of the 1H NMR spectra of the model [PtCl4{NH=C(R)N=SPh2}2] complexes (R = Me, Et) in CD2Cl2 studied in a temperature range from +40 to -70 °C demonstrated that EZ isomerization of the ligands is a dynamic process in a range from +40 to -10 °C. The activation free energy of this process was calculated.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1618–1622, August, 2004.  相似文献   

9.
Paramagnetic complexes CuL1SO4·0.5H2O, CuL2SO4·2H2O and diamagnetic Pd(HL2)Cl3 (L1 = 2-methyl-1,3,11,11c-tetraazacyclopenta[c]phenanthrene complex (L2 = 2-phenyl-1,3,11,11c-tetraazacyclopenta-[c]phenanthrene) were synthesized. The most probable structure of the complexes was suggested on the basis of the IR and ESR spectra. Coordination units of paramagnetic complexes contain N atoms of the bidentate cycle-forming ligands, L1 and L2 molecules. The square PdCl3N unit of the diamagnetic complex includes the N atom of the triazole fragment of the monodentate ligand, (HL2)+ cation.  相似文献   

10.
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of d-glucose at carbon 2 in the presence of molecular O2 producing d-glucosone (2-keto-glucose and d-arabino-2-hexosulose) and H2O2. It was used to convert d-glucose into d-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of d-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H2O2 acted as inhibitor for this reaction. The rate of bioconversion of d-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO2 at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55°C) and pH (5.0) of d-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E a) was 32.08 kJ mol−1 and kinetic parameters (V max, K m, K cat and K cat/K m) for this bioconversion were 8.8 U mg−1 protein, 2.95 mM, 30.81 s−1 and 10,444.06 s−1 M−1, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of d-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.  相似文献   

11.
The kinetics of oxidation of the sugars d(+)Melibiose (mel) and Cellobiose (cel) by N-bromoacetamide (NBA) in the presence of Rh(III) chloride as homogeneous catalyst in acidic medium at 45 °C have been investigated. The reactions are first-order with respect to [NBA], [Rh(III)] and [substrate]. The rate is proportional to [H+]. No effects of [Hg(II)], [NHA] or [Cl] on the rates were observed. Ionic strength and dielectric constant also have little effect. The observed kinetic data, available literature and spectroscopic evidence lead us to conclude that NBAH+ and [RhCl5(H2O)]2− are the reactive species of NBA and Rh(III) chloride, respectively. The rate-determining step of the proposed reaction path common for both sugars gives an activated complex by the interaction of a charged complex species and neutral sugar molecule, which in the subsequent steps disproportionates into the reaction products with the regeneration of catalyst. The reactions have been studied at four different temperatures and with the help of first-order rate constant values, various activation parameters have been calculated. The main oxidation products of the reactions were identified as arabinonic acid, formic acid and lyxonic acid in the case of mel and arabinonic acid and formic acid in the case of cel.  相似文献   

12.

Abstract  

The hydrothermal reaction of Gd(NO3)3·6H2O with 2,2′-bipyridyl-4,4′-dicarboxylic acid(H2BPDC) ligand results in the formation of a new Gd(III) polymer: {[Gd2(BPDC)3(H2O)3]·H2O} n..(1). The central gadolinium ion is coordinated by eight oxygen atoms to give a dicapped triangular prism geometry. Based on the versatile coordination modes of BPDC2− ligand, together with hydrogen bonds and π···π stacking interactions, a 3-D network is presented. DFT calculation was executed to probe the electronic structure of 1.  相似文献   

13.
Two new complexes, namely, [Cd2(L1)2(NCS)4(DMF)2] · 4H2O (I) and {[Zn3(L2)4(SO4)3(H2O)8] · 3DMF · 6H2O} n (II) have been synthesized through self-assembly of Cd(II) or Zn(II) salts with ferrocenyl ligands bearing pyrazolyl pyridine substituents. The two compounds were characterized by IR spectra, element analysis, X-ray powder diffraction, single-crystal X-ray diffraction (СIF files CCDC nos. 949526 (I), 949527 (II)), and thermogravimetric analysis. Complex I crystallizes in the monocline space group P21/c and exhibits a discrete dinuclear structure. The adjacent dinuclear molecules are packed into a 1D linear chain through the hydrogen-bond interactions. Complex II is a neutral one-dimensional infinite zigzag coordination chain. The 3D packing diagram of II contains two types of voids and the solvated DMF and water molecules filled them and stabilized by the hydrogen bonds. In addition, the redox properties of both complexes I and II have also been investigated.  相似文献   

14.
The kinetics of the interaction of glycine-l-leucine (Glyleu) with cis-[Pt(cis-dach)(OH2)2]2+ (dach = 1,2-diaminocyclohexane) has been studied spectrophotometrically as a function of [cis-[Pt(cis-dach)(OH2)2]2+], [Glyleu] and temperature at pH 4.0, where the complex exists predominantly as the diaqua species and Glyleu as a zwitterion. The substitution reaction shows two consecutive steps: the first is the ligand-assisted anation and the second is the chelation step. The activation parameters for both the steps were evaluated using Eyring’s equation. The low ∆H1 (51.9 ± 2.8 kJmol−1) and large negative value of ∆S1 (−152 ± 8 JK−1mol−1) as well as ∆H2 (54.4 ± 1.7 kJmol−1) and ∆S2 (−162 ± 5 JK−1mol−1) indicate an associative mode of activation for both the aqua ligand substitution processes.  相似文献   

15.
New tri- and tetranuclear macrocyclic silver(i) and copper(i) 3-ferrocenyl-5-(trifluoromethyl)pyrazolates were prepared: [{(3-((η5-C5H4)Fe(η5-C5H5))-5-(CF3)-Pz}M]3 (M = Cu (1), Ag (2)) and [{(3-(( η5-C5H4)Fe(η5-C5H5))-5-(CF3)-Pz}Cu]4 (3). The structures of compounds were established by X-ray diffraction analysis. In the crystalline state, a planar trinuclear silver-containing macrocycliс pyrazolate and a saddle-shaped tetranuclear copper-containing macrocycle are formed. The introduction of a bulky substituent, ferrocene, into the pyrazole ligand results in complete shielding of the acidic metal sites, which precludes the coordination of base molecules.  相似文献   

16.
New dinuclear ruthenium manganese complexes of general composition (bpy)2Ru(L)MnClx(H2O)2 (L is 1,10-phenanthroline-5,6-dione, 3,3′-dicarboxy-2,2′-bipyridyl, or bis(pyrazolyl); x = 2 or 4) were synthesized by the reaction of (bpy)2Ru(L) with MnCl2 · 4H2O. These compounds and the starting mononuclear ruthenium complexes were studied by spectrophotometric and electrochemical methods in MeCN. The position of the charge-transfer band RuII → L in the spectra depends on the donor-acceptor characteristics of the ligand L. For the dinuclear complex under study, the formal potentials of reversible one-electron oxidation of RuII are in the range of 0.9–1.2 V (vs. the standard hydrogen electrode), whereas oxidation of MnII occurs at more positive (by 0.1–0.2 V) potentials. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2281–2285, October, 2005.  相似文献   

17.
The reactions of bis(hexafluoroacetylacetonato)copper(II) [Cu(hfac)2] with the nitronyl nitroxide biradicals bis[4-(4,4,5,5-tetramethyl-3-oxide-1-oxyl-4,5-dihydro-1H-imidazol-2-yl)pyrazol-1-yl]alkanes (L6, L10, and L12) produced the framework heterospin complex [Cu(hfac)2]2L6 and the layer-polymeric heterospin complexes [Cu(hfac)2]2L10 and {[Cu(hfac)2]2L12} [Cu(hfac)2(PriOH)2], respectively. In the solid state of these compounds, the stereochemical nonrigidity is manifested as a deformation of the polymethylene fragments-(CH2)n-. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1732–1741, September, 2007.  相似文献   

18.
Three new metal-organic coordination polymers were obtained namely, [Mn3(chdc)3-(NMP)2(DMF)2] (1, chdc2– is trans-1,4-cyclohexanedicarboxylate, NMP is N-methylpyrrolidone, DMF is N,N-dimethylformamide), [Zn3(chdc)3(NMP)2]?2NMP (2), and [Zn3(chdc)3(ur)-(DMF)0.5]?DMF (3, ur is the urotropine). The crystal structures of polymers 1, 2, and 3 were determined by single-crystal X-ray crystallography. All three compounds were found to contain a trinuclear secondary building unit {M3(OOC)6}. Coordination polymers 1 and 2 have a layered structure, while polymer 3 has a three-dimensional coordination framework with isolated pores formed due to the presence of urotropine bridging molecules. Compounds 1 and 3 were characterized by IR spectroscopy, thermogravimetric and elemental analysis data, powder X-ray diffraction. Compound 3 was also characterized by UV-Vis diffuse reflectance spectrum.  相似文献   

19.
The nitrosation of [Ru(NH3)6]2+ in hydrochloric acid and alkaline ammonia media has been studied; the patterns of interconversion of ruthenium complexes in reaction solutions have been proposed. In both cases, nitrogen(II) oxide acts as the nitrosation agent. The procedure for the synthesis of [Ru(NO)(NH3)5]Cl3 · H2O (yield 75–80%), the main nitrosation product of [Ru(NH3)6]2+, has been optimized. Thermolysis of [Ru(NO)(NH3)5]Cl3 · H2O in a helium atmosphere has been studied; the intermediates have been identified. One of these products is polyamidodichloronitrosoruthenium(II) whose subsequent decomposition gives an equimolar mixture of ruthenium metal and dioxide. The structure of trans-[RuNO(NH3)4Cl]Cl2, formed in the second stage of thermolysis and as a by-product in the nitrosation of [Ru(NH3)6]Cl2, has been determined by X-ray diffraction.  相似文献   

20.
A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be \Updelta\textr H\textmq = 3 6 9. 4 9 ±0. 5 6   \textkJ·\textmol - 1 . \Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} . According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be \Updelta\textf H\textmq \Updelta_{\text{f}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号