首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
From density and viscosity measurements at 25 and 40°C, excess volumes and excess viscosities of the binary mixtures of a cyclic ether with bromobenzene were determined. The results are correlated by means of a Redlich-Kister type equation and interpreted in terms of molecular interactions.  相似文献   

3.
A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.  相似文献   

4.
A solid-liquid equilibrium (SLE) thermodynamic model based on the SAFT-VR equation of state (EOS) is presented. The model allows for the calculation of solid-liquid phase equilibria in binary mixtures at atmospheric pressure. The fluid (liquid) phase is treated with the SAFT-VR approach, where molecules are modelled as associating chains of tangentially bonded spherical segments interacting via square-well potentials of variable range. The equilibrium between the liquid and solid phase is treated following a standard thermodynamic method that requires the experimental temperature and enthalpy of fusion of the solute. The model is used to calculate the solubilities of naphthalene and acetic acid in common associating and non-associating organic solvents and to determine the solid-liquid phase behaviour of binary mixtures with simple eutectics. The SAFT-VR pure component model parameters are determined by comparison to experimental vapour pressure and saturated liquid density data with the choice of association models according to the nature of the molecule; in addition, an unlike adjustable parameter (kij) is used to model the solutions. The solubility data of naphthalene and acetic acid in both associating and non-associating solvents are reproduced essentially within the accuracy of the experimental measurements. The phase boundaries and the position of the eutectic points in the binary mixtures considered are, in most cases, reproduced with the accuracy commensurate with the industrial applications. Overall, the results presented show that the SAFT-VR EOS can be used with confidence for the prediction of the SLE of binary systems at atmospheric pressure.  相似文献   

5.
《Fluid Phase Equilibria》1988,44(1):95-103
In the near-critical region of propane, phase equilibria of binary mixtures of propane + acenaphthene have been investigated experimentally. Apart from the three-phase equilibrium solid acenaphthene + liquid + vapour, two-phase boundaries liquid + vapour and solid acenaphthene + liquid have been investigated over the entire mole fraction range. The measurements were performed in the temperature region 350–420 K with pressures up to 10 MPa.  相似文献   

6.
7.
In this study we present a global overview of the adsorption behavior of hexane isomers on MFI. With an experimental approach that couples a manometric technique with Near Infrared (NIR) spectroscopy, which has been recently developed, we did address adsorption kinetic properties of n-hexane, 2-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane, and their binary mixtures. The adsorption equilibrium properties of the binary mixtures were also assessed using the same technique. Whereas the adsorption isotherms and heats of adsorption for single components have been studied by a manometric technique coupled with a micro calorimeter. The differential heats of adsorption of n-hexane increase slightly with loading, on the other hand the heat of adsorption of branched hexanes exhibits a decrease with loading. The diffusion rates on MFI of n-hexane, 2-methylpentane and 2,3-dimethylbutane are in the same order of magnitude. However, the diffusion rate of 2,2-dimethylbutane is two orders of magnitude lower than rates of the other isomers. In the binary mixtures the components interact and the difference between the diffusion rates of the components decreases. The MFI zeolite presents equilibrium selectivity towards the less branched isomers. In conclusion, a separation process for linear/mono-branched alkanes + double-branched alkanes, has to be based on its equilibrium properties and not based on adsorption kinetics.  相似文献   

8.
The thermodynamic study of the phase transition (fusion and sublimation) of 2,2′:5′,2″-terthiophene and 3,2′:5′,3″-terthiophene is presented. The obtained data is used to evaluate the (solid + liquid) and (solid + gas) phase equilibrium, and draw the phase diagrams of the pure compounds near the triple point coordinates. For each compound the vapour pressures at different temperatures were measured by a combined Knudsen effusion method with a vacuum quartz crystal microbalance. Based on the previous results, the standard molar enthalpies, entropies and Gibbs energies of sublimation were derived at T = 298.15 K. For the two terthiophenes and for 3,3′-bithiophene, the temperature, and the molar enthalpies of fusion were measured in a power compensated differential scanning calorimetry. The relationship between structure and energetics is discussed based on the experimental results, ab initio calculations and previous literature data for 2,2′-bithiophene and 3,3′-bithiophene. The 3,2′:5′,3″-terthiophene shows a higher solid phase stability than the 2,2′:5′,2″-terthiophene isomer arising from the higher cohesive energy due to positioning of the sulphur atom in the thiophene ring. The higher phase stability of 3,3′-bithiophene relative to 2,2′-bithiophene isomer is also related to its higher absolute entropy in the solid phase associated with the ring positional degeneracy observed in the crystal structure of this isomer. A significant differentiation in the crystal phase stability between isomers was found.  相似文献   

9.
Refractive indices of binary mixtures formed by a cyclic ether (tetrahydrofuran or tetrahydropyran) and each of the isomeric chlorobutanes (1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane and 2-chloro-2-methylpropane) have been measured at two temperatures, 298.15?K and 313.15?K. From experimental data, refractive index deviations and molar refractions have been calculated. Furthermore, several common mixing rules have been used to predict refractive indices of the mixtures from their experimental densities reported previously.  相似文献   

10.
The phase equilibrium, at T = 298.15 and 313.15 K and several thermophysical properties (density, sound velocity, refractive index) at T = 283.15, 298.15 and 313.5 K of mixtures formed by a cyclic ether (tetrahydropyran, tetrahydrofuran) and 1-chloropropane has been studied. Excess Gibbs functions, excess volumes, excess isentropic compressibilities and refractive index deviations have been obtained from the experimental data. Both the molecular characteristics of the pure compounds and the molecular interactions in the mixing process have been used to analyse the results.  相似文献   

11.
12.
Differential scanning calorimetry and polarization microscopy were used to study the phase diagram of a mixture of nematic liquid crystals, 4-n-pentyl-4′-cyanobiphenyl and 4-n-octyloxyphenyl-4′-hexylbenzoate.  相似文献   

13.
The (vapor + liquid) equilibrium data for binary systems of (methane + methanol), (methane + ethanol), and (methane + 1-propanol) at ambient temperature over a wide range of pressures, (1 to 8) MPa, were measured using a designed pressure–volume–temperature (PVT) apparatus. The phase composition and saturated density of liquid phase were measured for each pressure. The density of pure methanol, ethanol and 1-propanol was also measured at ambient temperature over a wide range of pressure (1 to 10) MPa. The experimental (vapor + liquid) equilibrium data were compared with the modeling results obtained using the Peng–Robinson and Soave–Redlich–Kwong equations of state. To improve the predictions, the binary interaction parameters were adjusted and the volume translation technique was applied. Both equations of state were found to be capable of describing the phase equilibria of these systems over the range of studied conditions. The Soave–Redlich–Kwong equation of state gave better predictions of saturated liquid densities than Peng–Robinson equation of state.  相似文献   

14.
Molar excess heat capacities at constant pressure, CEp, of binary liquid mixtures chloroform + oxolane, chloroform + 1,3-dioxolane, chloroform + oxane, and chloroform + 1,4-dioxane have been determined at 298.15 K from measurements of volumetric heat capacities in a Picker flow microcalorimeter. A precision of ±0.04 J K?1 mole? was achieved by using the stepwise procedure. Experimental molar excess heat capacities are compared with values derived from HE results at different temperatures. Excess molar volumes, VE, for the same systems at 298.15 K have been determined by measuring the density of the pure liquids and solutions with a high-precision digital flow densimeter.  相似文献   

15.
Experimental surface tensions and the corresponding surface tensions deviations for the mixtures containing 1,3-dioxolane or 1,4-dioxane and 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane or 2-chloro-2-methylpropane, measured with a drop volume tensiometer, are reported at the temperatures of 298.15 K and 313.15 K. The excess surface concentrations of isomeric chlorobutanes are also evaluated using a monolayer model.  相似文献   

16.
Volumetric heat capacities were measured for binary mixtures of n-heptane with n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, and 2,3-dimethylbutane at 298.15 K in a Picker flow microcalorimeter. The results were combined with previously published excess molar volumes to obtain excess molar isobaric heat capacities. Use of the Flory theory of mixtures to interpret the latter is discussed.  相似文献   

17.
Summary Complexes of 2,6 pyridine-bis-glyoxal-o-mercaptylanil and thiophene-2-glyoxal-o-pyridineanil with Fe(III), Co(II), Ni(II) and Cu(II), isolated as binary mixtures, were quantitatively resolved on thin layers of silica gel and their compositions were determined. Separation of mixtures in bulk was by column chromatography. Resolved components, including cis- trans and structural isomers, were identified by correlating their RF values with spectral properties.  相似文献   

18.
Measurements of volumetric heat capacities at constant pressure, Cp/V (V being the molar volume), at 298.15 K, of the binary liquid mixtures 1,1,1-trichloroethane + oxolane, +1,3-dioxolane, +oxane, +1,3-dioxane, and +1,4-dioxane were carried out in a Picker-type flow microcalorimeter. Molar heat capacities at constant pressure. Cp, and molar excess heat capacities, CEp, were calculated from these results as a function of the mole fraction. CEp values for these systems are positive and the magnitude depends on the size of the cycle and on the relative position of the oxygen atoms in the cyclic diethers. The precision and accuracy for CEp are estimated as better than 2%. Molar excess volumes, VE, for the same systems, at 298.15 K, have been determined from density measurements with a high-precision digital flow densimeter. The experimental results of VE and CEp, are interpreted in terms of molecular interactions.  相似文献   

19.
《Fluid Phase Equilibria》1988,41(3):245-256
Experimental results for various types of phase behaviour which can occur in the binary ethane + docosane system are presented. The experimental data cover various two-phase boundaries and the three-phase equilibria solid docosane + liquid + vapour and liquid + liquid + vapour. In addition, p,V,T measurements of liquid docosane are carried out. The experimental work is performed within a temperature range of ∼ 290–370 K and at pressures of up to 16 MPa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号