[formula: see text] A library of fluoroaromatic inhibitors of carbonic anhydrase has been found to bind in a manner dependent on both hydrophobicity and the pattern of substitution of the fluoroaromatic ring. All of the compounds in the library bind to the protein with Kd < 3 nM. We have inferred two distinct binding modes from our data, which suggest two types of interactions that should be considered when designing fluorinated drugs. 相似文献
Two series of tricyclic inhibitors of the serine protease thrombin, imides (+/-)-1-(+/-)-8 and lactams (+/-)-9-(+/-)-13, were analysed to evaluate contributions of orthogonal multipolar interactions with the backbone C=O moiety of Asn98 to the free enthalpy of protein-ligand complexation. The lactam derivatives are much more potent and more selective inhibitors (K(i) values between 0.065 and 0.005 microM, selectivity for thrombin over trypsin between 361- and 1609-fold) than the imide compounds (Ki values between 0.057 and 23.7 microM, selectivity for thrombin over trypsin between 3- and 67-fold). The increase in potency and selectivity is explained by the favorable occupancy of the P-pocket of thrombin by the additional isopropyl substituent in the lactam derivatives. The nature of the substituent on the benzyl ring filling the D pocket strongly influences binding potency in the imide series, with Ki values increasing in the sequence: F < OCH2O < Cl < H < OMe < OH < N(pyr)< Br. This sequence can be explained by both steric fit and the occurrence of orthogonal multipolar interactions with the backbone C[double bond, length as m-dash]O moiety of Asn98. In contrast, the substituent on the benzyl ring hardly affects the ligand potency in the lactam series. This discrepancy was clarified by the comparison of X-ray structures solved for co-crystals of thrombin with imide and lactam ligands. Whereas the benzyl substituents in the imide inhibitors are sufficiently close (< or =3.5 Angstroms) to the C=O group of Asn98 to allow for attractive orthogonal multipolar interactions, the distances in the lactam series are too large (> or =4 Angstroms) for attractive dipolar contacts to be effective. 相似文献
At the molecular level, the enantiomerically pure square‐planar organoplatinum complex (SP‐4‐4)‐(R)‐[2‐(1‐aminoethyl)‐5‐fluorophenyl‐κ2C1,N][(R)‐1‐(4‐fluorophenyl)ethylamine‐κN](isocyanato‐κN)platinum(II), [Pt(C8H9FN)(NCO)(C8H10FN)], and its congener without fluorine substituents on the aryl rings adopt the same structure within error. The similarities between the compounds extend to the most relevant intermolecular interactions, i.e. N—H…O and N—H…N hydrogen bonds link neighbouring molecules into chains along the shortest lattice parameter in each structure. Differences between the crystal structures of the fluoro‐substituted and parent complex become obvious with respect to secondary interactions perpendicular to the classical hydrogen bonds; the fluorinated compound features short C—H…F contacts with an F…H distance of ca 2.6 Å. The fluorine substitution is also reflected in reduced backbonding from the metal cation to the isocyanate ligand. 相似文献
Changes in binding affinity to catalytic antibody 6D9 of chloramphenicol phosphonate derivatives (CPDs) containing H or F were investigated by performing free energy calculations based on molecular dynamics simulations. We calculated the binding free energy, enthalpy, and entropy changes (DeltaDeltaG, DeltaDeltaH, and -TDeltaDeltaS) attributable to H-->F substitution by comparing results for CPDs containing a trifluoroacetylamino group (CPD-F) or an acetylamino group (CPD-H). The calculated DeltaDeltaG, DeltaDeltaH, and -TDeltaDeltaS values were -2.9, -6.3, and 3.5 kcal mol(-1) and close to experimental values observed for a series of similar ligands, chloramphenicol phosphonates with F and H (-1.4, -3.5, and 2.1 kcal mol(-1)). Therefore, CPD-F binds more strongly to 6D9 than does CPD-H. To clarify the origin of the large difference in DeltaDeltaG, we apportioned the calculated values of DeltaDeltaG and DeltaG for the associated and dissociated states into contributions from various atomic interactions. We found that the H-->F substitution increased the binding affinity mainly by decreasing the hydration free energy and not by increasing favorable interactions with the antibody. The decreased hydration free energy of the ligand was mainly due to unfavorable coulombic interactions between the trifluoroacetylamino group and solvent waters, which increased the free energy of the dissociated state (by about 3.7 kcal mol(-1)). Also, the trifluoroacetylamino group slightly increased the free energy level of the associated state (about 0.8 kcal mol(-1)) because favorable van der Waals interactions compensated for unfavorable coulombic interactions with antibody atoms. In addition, the enthalpy and entropy changes, DeltaDeltaH and -TDeltaDeltaS (computationally -6.3 and 3.5 kcal mol(-1)), originated mainly from a decrease in hydration free energy in the dissociated state. The CPD-F and CPD-H ligands had substantially different structures in the dissociated and complexed states. 相似文献
Porous calcium hydroxyapatite (p-HAp) was prepared by wet chemical methods. The poorly crystalline structure and the high surface specific area (235 m2/g) of this hydroxyapatite have effects on the variation of the electrical properties. Good linearity of logarithm of conductivity versus the relative humidity in the range from 19% to 88% (RH) was observed using the complex impedance spectroscopy. The proton conduction was affected by the relative humidity related to H2O adsorption on the material surfaces. The fluorine substitution in p-HAp also modifies the crystalline and the proton conduction properties. 相似文献
This article describes the synthesis and in vitro biological affinities of (poly)fluorinated neprilysin inhibitors. Two series of inhibitors with F-substitution of the central benzimidazole platform of the ligands and the benzylic vector to fill the S1’ pocket of NEP were investigated. The S1’ pocket was found to be highly fluorophobic, and F-substitution led to significantly decreased binding affinities of inhibitors. This result is explained by electrostatically unfavorable close contacts of organic fluorine with the negatively polarized π-surfaces of surrounding aromatic amino acid side chains. In contrast, the protein environment around the benzimidazole platform, with three electropositive guanidinium side chains of Arg residues, was found to provide a fluorophilic environment. Overall, the data support that organic fluorine, with its high negative charge density prefers to orient into electropositive regions of receptor sites. pKa measurements of fluorinated ligands provided several simple patterns for the prediction of pKa values of benzimidazoles, important building blocks in medicinal chemistry. 相似文献
This paper describes the construction, validation and application of an active site model of the serine protease thrombin. Initial use was made of medium resolution X-ray crystallographic structures of thrombin complexed with low molecular weight, non-specific inhibitors to create a computationally useable active site shell of the enzyme. Molecular mechanics methods were then applied to dock known ligands into the active site region in order to derive a model that would accurately predict binding conformations. Validation of the modelling process was achieved by comparison of the predicted enzyme-bound conformations with their known, crystallographic binding conformations. The resultant model was used extensively for predictive purposes prior to obtaining confirmatory crystal data relating to a ligand possessing a novel and unexpected binding component complexed to thrombin. The data served both to confirm the accuracy of the binding site model and to provide information for the further refinement of the model. 相似文献
The binding of different anions to calix[4]pyrrole has been studied by means of molecular dynamics coupled to thermodynamic integration calculations. The effect of different apolar solvents, octafluoro substitution, and the change in binding free energy derived from the presence of cosolute and water traces (the hydrated salt used to introduce the anion in the solution) were examined. Calculations allow us to rationalize the differential binding of ions to calix[4]pyrrole and octafluorocalix[4]pyrrole as well as to predict the behavior in new solvents for which experimental data are not available yet. It is found that both calix[4]pyrrole and octafluorocalix[4]pyrrole have a dramatic preference for F- in the gas phase and pure aprotic solvents, but the situation can change dramatically in protic solvents or in the presence of the hydrated cation which is used as cosolute of the anion. Overall, our results provide interesting clues for a better understanding of the process detected experimentally as "binding". 相似文献
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug–protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins. 相似文献
Ab initio SCF MO calculations for the hydrogen-bonded complexes between nitriles and hydrogen fluoride suggest a strong linear relationship between the charge density at the hydrogen-bond critical point and the hydrogen-bond energy. Further investigation of the topological properties of the charge density indicates that the generalization of the bond-length-bond-order relationship of CC bonds due to Bader et al. may be extended to intermolecular hydrogen bonding. Calculations at the 6–31G** level, including complete geometry optimization, are reported for the complexes, where R H, Li, F, Cl, HO, LiO, NC, HCC, CH3 and CH3O. 相似文献
Interaction energies of phenylalanine ammonia-lyase (PAL) active site residues with a series of PAL inhibitors have been partitioned into electrostatic, exchange, delocalization, and correlation components and compared with analogous results obtained previously for leucine aminopeptidase (LAP). In the latter metalloenzyme, either of the two charged residues controls entirely relative inhibitor binding energies, while at least four residues are required to determine ligand relative stabilization in neutral PAL. Significant correlation with experimental inhibitory activity was found between the stabilization energy at gradually decreasing levels of theory (MP2, SCF) down to the first-order Heitler-London term. Contrary to the LAP case, where the electrostatic term was sufficient to reproduce experimentally observed trends, in the case of PAL, exchange repulsion effects also have to be considered. Computational protocol presented herein constitutes a promising way to incorporate the first principle calculation's accuracy into the process of rational binding affinity prediction, revealing the physical nature of the interactions, where successive approximations can be introduced in a systematic and justifiable manner. 相似文献
The acceptor capabilities of "organic" halogen, CX (X=F, Cl, Br, I), with respect to hydrogen bonding are controversial, and unactivated organic chlorine is generally deemed to be a poor acceptor. Hydrogen bridges of the type O--H...Cl--C are uncommon and occur mainly in an intramolecular situation when the donor group is sterically hindered, so that the formation of intermolecular interactions is difficult. In this paper, intramolecular O--H...Cl--C interactions in a series of chloro-substituted gem-alkynols are studied. We describe various features of this interaction using crystallographic, spectroscopic and computational methods. The O--H...Cl--C interaction occurs in five of the six compounds under consideration here (CDDA, 14DDDA, 15DDDA, 18DDDA, 15MKA). Solution (1)H NMR spectroscopy shows that the interaction is intramolecular and that it is a true hydrogen bond. DFT calculations give a stabilisation energy around 4.0 kcal mol(-1). In the crystal structures of the compounds studied, the intramolecular O--H...Cl--C interactions fit into the overall scheme of cooperative interactions. These structures may be derived from that of the unsubstituted compound DDA by means of synthon exchange and the O--H...Cl--C interaction fares surprisingly well in the presence of competing stronger acceptors. The crystal structures show an unusual degree of modularity for compounds that generally form interactions that are weak and variable. It is noteworthy that the so-called "weak" acceptor, organic chlorine, is able to sustain a good intramolecular hydrogen bridge that is of an attractive and stabilizing nature and which is of potential importance in crystal engineering and supramolecular chemistry. 相似文献
Ab initio and some density functional theory calculations of bond lengths in fluoro- and chloro-ethanes and disilanes are reported with a precision of ±0.0001 Å under strictly comparable conditions. The resulting changes in MH and MX (M=C, Si; X=F, Cl) bond length are analysed for the effects of halogens substituted in geminal (), or vicinal (gauche or trans) positions. The shortening effect of halogen on an MH bond is markedly reduced or even reversed by the introduction of electron correlation at the MP2 or B3LYP level. MX bonds are little affected. gauche halogen consistently shortens both MH and MX bonds, while trans halogen has no effect on an MH bond but a small and variable effect on the MX bond.
The reality of these calculated changes in bond length is tested in two ways. MH bond lengths are plotted against experimental values of the isolated stretching frequencies νisMH, which themselves correlate well with experimental r0 bond lengths. Agreement on the resulting substituent effects is generally good for the gauche and trans effects of halogen but variable for effects. Unobserved νisMH values are predicted from computed bond lengths in fluoroethanes, chloroethanes and chlorodisilanes.
Calculated MX and MM bond lengths are compared with experimental values, notably those from electron diffraction studies amongst the ethanes. Most calculations underestimate the changes found experimentally in CF and CCl bond lengths. CC bond length changes are underestimated in fluoroethanes and overestimated in the chloro-compounds.
The ‘offset’ value (re(calc)−re(true)) for a CH or SiH bond calculated with a given basis set and level of theory in most cases varies markedly throughout the series of compounds. The same is true for CF, CCl, CC and SiSi bonds if the corresponding offset values for the ra lengths are constant.
The need is stressed for extended experimental work on many of the compounds, especially the disilanes. It is recommended that structures should be refined with ab initio derived constraints on the bond lengths involved and differences between spectroscopic and diffraction-based geometries reconciled through the calculation of rz structures. 相似文献
A theoretical model for calculating molecular structure parameters of a series of diphenylanthrazolines with different substitutes by using density functional theory B3LYP/6-31G* is presented. In addition, a theoretical characterization for molecular structure without the substitute radical (4,9-diphenylanthrazoline) was performed. Furthermore, the highest occupied molecular orbitals and lowest unoccupied molecular orbitals, gap energy, ionization potential, and electronic affinity were obtained by means of density functional theory calculations and compared with experimental data. The results showed a decrease in gap energies when incorporating radicals to the base anthrazoline structure. 相似文献
Inhibition of the enzyme catechol-O-methyltransferase (COMT) is an important approach in the treatment of Parkinson's disease. A series of new potent bisubstrate inhibitors for COMT, resulting from X-ray structure-based design and featuring adenosine and catechol moieties have been synthesised. Biological results show a large dependence of binding affinity on inhibitor preorganisation and the length of the linker between nucleoside and catechol moieties. The most potent bisubstrate inhibitor for COMT has an IC50 value of 9 nM. It exhibits competitive kinetics for the SAM and mixed inhibition kinetics for the catechol binding site. Its bisubstrate binding mode was confirmed by X-ray structure analysis of the ternary complex formed by the inhibitor, COMT and a Mg2+ ion. 相似文献
The standard (po = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, of 2-, 3- and 4-bromobenzonitrile isomers were calculated from the combination of the following two parameters experimentally determined: the standard molar enthalpy of formation in the condensed phase, derived from the standard molar energy of combustion in oxygen at T = 298.15 K, measured by rotating-bomb combustion calorimetry, and the standard molar enthalpy of sublimation at the same reference temperature, derived from vapour pressure studies at several temperatures, as measured by mass-loss Knudsen effusion. The computational calculations complement the energetic study and analysis of the electron delocalization allows a comparison between the fluorine and bromine benzonitrile isomers. The harmonic oscillator model of aromaticity and nucleus-independent chemical shift aromaticity criteria and the natural bond orbital analysis were applied and related with the intramolecular enthalpic interactions. The intermolecular interactions in the crystal packing were analysed in terms of enthalpic and entropic contributions, using the crystallographic structures available in literature. 相似文献