首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An analysis of temperature-fields and heat transfer in a heat exchanger with codirected cross-flow configuration (see Fig. 1) and tube bundle of arbitrary size has been carried out. This kind of flow arrangement is very suitable for heat transfer between liquid flowing in finned tubes bundle while gas passing across them. The problem was treated analytically by using the method ofweighted mean value of outside fluid temperature described in [1]. The solution of energy balance equations, valid for this case, is expressed by special polynomials which are appropriate for fast calculation of temperatures. They are analogous to other polynomials found in mathematical physics. As end result it has been established that for such cross-flow arrangements, with an arbitrary number of tubesn in the bundle, given NTU value and the heat capacity rate ratioR, the relation for thermal effectivenessP has a simple explicit form.  相似文献   

3.
A fast analytical calculation method is developed for the thermal design and rating of multi-fluid mixed-mixed cross-flow heat exchangers. Temperature dependent heat capacities and heat transfer coefficients can iteratively be taken into account. They are determined at one or two special reference temperatures. Examples are given for the application of the method to the rating of special multi-fluid multi-pass shell-and-tube heat exchangers and multi-fluid cross-flow plate-fin heat exchangers. The accuracy of the method is tested against numerical calculations with good results.  相似文献   

4.
5.
This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a non-linear regression method. Correlation coefficients were determined from the condition that the sum of squared fluid temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The outlet temperature of the fluid leaving the heat exchanger was calculated using the mathematical model describing the heat transfer in the heat exchanger. Since the conditions at the liquid-side and those at the air-side are identified simultaneously, the derived correlations are valid in a wide range of flow rate changes of the air and liquid. This is especially important for partial loads of the exchanger, when the heat transfer rate is lower than the nominal load. The correlation for the average heat transfer coefficient on the air-side based on the experimental data was compared with the correlation obtained from numerical simulation of 3D fluid and heat flow, performed by means of the commercially available CFD code. The numerical predictions are in good agreement with the experimental data.  相似文献   

6.
 An experimental and numerical investigation of heat transfer and fluid flow was conducted for corrugated-undulated plate heat exchanger configurations under transitional and weakly turbulent conditions. For a given geometry of the corrugated plates the geometrical characteristics of the undulated plates, the angle formed by the latter with the main flow direction, and the Reynolds number were made to vary. Distributions of the local heat transfer coefficient were obtained by using liquid-crystal thermography, and surface-averaged values were computed; friction coefficients were measured by wall pressure tappings. Overall heat transfer and pressure drop correlations were derived. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k–ɛ model under the assumption of fully developed flow. Computed flow fields provided otherwise inaccessible information on the flow patterns and the mechanisms of heat transfer enhancement. Received on 5 February 1999  相似文献   

7.
8.
This paper is concerned with heat transfer by plate spacers in plate-fin heat exchangers. The spacers are considered as fins attached to the plates and are exposed to certain boundary conditions. The thermal resistances at the contact surfaces between the plates and the fins are assumed to be different from one another. Based on this model, equations for heat fluxes at contact surfaces are derived. Calculations from these equations reveal a considerable influence of the thermal resistances at the contact surfaces on the heat transfer.In der Arbeit wird der Wärmetransport durch Abstandshalter in Platten-Rippen-Wärmeübertragern behandelt. Die Abstandshalter werden wie Rippen betrachtet, die an den Platten befestigt und bestimmten Randbedingungen ausgesetzt sind. An den Kontaktstellen zwischen Platten und Rippen werden unterschiedliche Wärmewiderstände angenommen. Aufgrund dieses Modells lassen sich Gleichungen zur Berechnung der Wärmeströme an den Kontaktflächen herleiten. Die nach diesen Gleichungen vorgenommenen Berechnungen zeigen einen deutlichen Einfluß des thermischen Widerstandes an den Kontaktflächen auf den Wärmetransport in den Abstandshaltern.  相似文献   

9.
Microstructure heat exchangers have unique properties that make them useful for numerous scientific and industrial applications. The power transferred per unit volume is mainly a function of the distance between heat source and heat sink—the smaller this distance, the better the heat transfer. Another parameter governing for the heat transfer is the lateral characteristic dimension of the heat transfer structure; in the case of microchannels, this is the hydraulic diameter. Decreasing this characteristic dimension into the range of several 10s of micrometers leads to very high values for the heat transfer rate.

Another possible way of increasing the heat transfer rate of a heat exchanger is changing the flow regime. Microchannel devices usually operate within the laminar flow regime. By changing from microchannels to three dimensional structures, or to planar geometries with microcolumn arrays, a significant increase of the heat transfer rate can be achieved.

Microheat exchangers in the form of both microchannel devices (with different hydraulic diameters) and microcolumn array devices (with different microcolumn layouts) are presented and compared. Electrically heated microchannel devices are presented, and industrial applications are briefly described.  相似文献   


10.
In the present study, the potential of rectangular fins with 30° and 90° angle and 10 mm offset from the horizontal direction for heat transfer enhancement in a plate fin heat exchanger is numerically evaluated with conjugated heat transfer approach. The rectangular fins are mounted on the flat plate channel. The numerical computations are performed by solving a steady, three-dimensional Navier–Stokes equation and an energy equation by using Fluent software program. Air is taken as working fluid. The study is carried out at Re = 400 and inlet temperatures, velocities of cold and hot air are fixed as 300, 600 K and 1.338, 0.69 m/s, respectively. Colburn factor j versus Re design data is presented by using Fluent. The results show that the heat transfer is increased by 10 % at the exit of channel with fin angle of 30° when compared to channel without fin for counter flow. The heat transfer enhancement with fins of 30° and 90° for different values of Reynolds number with 300, 500 and 800 and for varying fin heights, fin intervals and also temperature distributions of fluids on the top and bottom surface of the channel are investigated for parallel and counter flow.  相似文献   

11.
A new program for simulation and optimization of the shell-and-tube heat exchangers is prepared to obtain useful results by employment of the computing technology fast and accurately. As an application of this program, the effects of transverse and longitudinal tube pitch in the in-line and staggered tube arrangements on the Nusselt numbers, heat transfer coefficients and thermal performance of the heat exchangers were investigated. The obtained values of the tube pitch were compared with literature values.  相似文献   

12.
By means of analysis equations for heat transfer performance based on number of heat transfer units were found, that allow to solve in a simple way single-pass and multipass heat exchanger problems when there are counterflow, crossflow and cocurrent modes of flow in any combination. There is no need to use external information such as the effectiveness concept or the correction factor F. The analysis gives new results which are at variance with traditional heat exchanger analysis when crossflow or cocurrent flow is involved.  相似文献   

13.
Investigation concerns the horizontal exchanger steam-water exposed to vibrations with frequency 20≤f≤120 [Hz] and amplitude 0.2≤A≤0.5 [mm] in the same direction as flow of medium. Experiments were executed for laminar flow in range of 430≤ Re≤2300. For the examined range the correlation equation was worked out: where (Ka) represents the new nondimensional modulus, which takes into account the influence of vibration frequency on heat transfer: Vibrations with high acceleration coefficient improve in general heat transfer, but nearing the resonance frequency can be harmful to the construction of the equipment.  相似文献   

14.
One of the criteria for evaluating the performance of a heat exchanger with extended surfaces is the pumping power required for a specified heat duty. The results of an experimental project to relate the pumping power to heat transfer augmentation in a double-pipe heat exchanger are reported. The inner, electrically heated pipe was provided with external, rectangular, axial extended surfaces with interruptions. Heat transfer augmentation and friction factors were determined for different configurations with air as the fluid. Starting with continuous fins, cuts were introduced in the fins to give four ratios of the finssegment length to the gap between the segments, and finally all the fins were removed, which resulted in smooth pipes. Five different mass flow rates in two different inner pipes were employed. Lengths, surface areas, and pumping powers for finned pipes are compared with those for smooth pipes. The average heat transfer coefficient increases with an increase in the frequency of the interruptions. For equal heat transfer rates a significant reduction in the lengths can be achieved by interrupted fins. In many cases the reduction in the length is also accompanied by a reduction in the pumping power.  相似文献   

15.
This paper presents an experimental–numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined based on experimental data using a non-linear regression method. Correlation coefficients were determined from the condition that the weighted sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg–Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using an analytical model of the heat exchanger.  相似文献   

16.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The flow boiling heat transfer characteristics of R134a in the multiport minichannel heat exchangers are presented. The heat exchanger was designed as the counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Two inner tubes were made from extruded multiport aluminium with the internal hydraulic diameter of 1.1 mm for 14 numbers of channels and 1.2 mm for eight numbers of channels. The outer surface areas of two inner test sections are 5979 mm2 and 6171 m2, while the inner surface areas are 13,545 mm2 and 8856 mm2 for 14 and eight numbers of channels, respectively. The outer tube of heat exchanger was made from circular acrylic tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at the heat fluxes between 15 and 65 kW/m2, mass flux of refrigerant between 300 and 800 kg/m2 s and saturation pressure ranging from 4 to 6 bar. For instance the boiling curve, average heat transfer coefficients are discussed. The comparison results of two test sections with different the number of channels are investigated. The results are also compared with nine existing correlations. The new correlation for predicting the heat transfer coefficient was also proposed.  相似文献   

18.
Both of experimental and numerical investigations were performed to understand unsteady natural convection from outer surface of helical coils. Four helical coils with two different curvature ratios were used. Each coil was mounted in the shell both vertically and horizontally. The cold water was entered the coil and the hot water in the shell was cooling by unsteady natural convection. A CFD code was developed to simulate natural convection heat transfer. Equations of tube and shell are solved simultaneously. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It was revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, specific heat of fluids and geometrical parameters including length, inner diameter of the tube and the volume of the shell, and time.  相似文献   

19.
In the present study, the heat transfer coefficients of shell and helically coiled tube heat exchangers were investigated experimentally. Three heat exchangers with different coil pitches were selected as test section for both parallel-flow and counter-flow configurations. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc. were measured using appropriate instruments. Totally, 75 test runs were performed from which the tube-side and shell-side heat transfer coefficients were calculated. Empirical correlations were proposed for shell-side and tube-side. The calculated heat transfer coefficients of tube-side were also compared to the existing correlations for other boundary conditions and a reasonable agreement was observed.  相似文献   

20.
A simplified model of heat transfer was developed to investigate the thermal behavior of heat exchangers and stack plates of thermoacoustic devices. The model took advantage of previous results describing the thermal behavior of the thermoacoustic core and heat transfer in oscillating flow to study the performance of heat exchangers attached to the core. The configuration considered is a flat tube (with a working fluid flowing in the tube) of the thickness of the stack plate attached to both ends of the stack plate. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, transport fluids in the heat exchangers, stack plate and the thermoacoustic working fluid were organized into dimensionless groups that allowed accounting for their impact on the performance of the heat exchangers. Two types of thermal boundary conditions were considered: constant temperature and constant heat flux along the heat exchanger tubes. Numerical simulations were carried out with the model introduced in the paper. The temperature distributions and heat fluxes near the edge of the stack plate were found to be nonlinear. The influence of system parameters on the thermal performance of the heat exchangers was analyzed.This article is dedicated to Prof. D. Mewes, whose knowledge, creativity, enthusiasm and dedication to engineering science was an inspiration to me and to many students, scientists, engineers and colleagues all over the world (C. Herman).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号