首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimension of nodes via adaptive control method is investigated in this paper. Based on Lyapunov stability theory, adaptive controller is obtained and unknown parameters of both the drive network and the response network are estimated by adaptive laws. In addition, the three-dimension chaotic system and the four-dimension hyperchaotic system, respectively, as the nodes of the drive and response network are analyzed in detail, and numerical simulation results are presented to illustrate the effectiveness of the theoretical results.  相似文献   

3.
The finite-time synchronization problem of a class of complex dynamical networks with time-varying delays is addressed in this paper. The network topology is assumed to be directed and weakly connected. By introducing a special zero row-sum matrix and combining the Lyapunov?CKrasovskii functional method and the Kronecker product technique, a sufficient condition is presented, which consist of two simple low-dimensional matrix inequalities. Illustrative example is given to show the feasibility of the proposed method.  相似文献   

4.
In this paper, the exponential function projective synchronization of impulsive neural networks with mixed time-varying delays is investigated. Based on the contradiction method and analysis technique, some novel criteria are obtained to guarantee the function projective synchronization of considered networks via combining open-loop control and linear feedback control. As some special cases, several control strategies are given to ensure the realization of complete synchronization, anti-synchronization, and the stabilization of the addressed neural networks. Finally, two examples and their numerical simulations are given to show the effectiveness and feasibility of the proposed synchronization schemes.  相似文献   

5.
We propose a simple scheme for the synchronization of an uncertain complex dynamical network with delayed coupling. Based on the Lyapunov stability theory of functional differential equations, certain controllers can be designed for ensuring the states of uncertain dynamical network with coupling delays to globally asymptotically synchronize by combining the adaptive method and linear feedback with the updated feedback strength. Different update gains η i will lead to different rates toward synchrony, the choice of which depends on the concrete systems and network models. This strategy can be applied to any complex dynamical network (regular, small-world, scale-free or random). Numerical examples with respectively nearest-neighbor coupling and scale-free structure are given to demonstrate the effectiveness of our presented scheme.  相似文献   

6.
The problem of sampled-data synchronization of complex dynamical networks with distributed coupling delay and time-varying sampling is discussed in this paper. Based on the input delay approach and two integral inequalities, a stability criterion is proposed for the error dynamics, which is sampling-interval-dependent. Based on the given criterion, the design method of the desired sampled-data controllers is also obtained in terms of the solution to linear matrix inequalities, which can be checked effectively by using available software. An example is given to illustrate the effectiveness of the proposed result.  相似文献   

7.
This paper investigates the adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling, in which the weights of links between two connected nodes are time varying. By the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization are obtained, and a hybrid controller, that is, an adaptive feedback controller with impulsive control effects is designed. The numerical examples are presented to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

8.
Wang  Zhibo  Wu  Huaiqin 《Nonlinear dynamics》2019,95(3):2031-2062

This paper is concerned with the global synchronization in fixed time for semi-Markovian switching complex dynamical networks with hybrid couplings and time-varying delays in the presence of disturbances. Firstly, the property with respect to the global stability in fixed time is developed for semi-Markovian switching nonlinear systems. Subsequently, a novel sliding manifold with double integration is presented based on the proposed principle of convergence in fixed time. Under the designed sliding mode controller, the state trajectory of synchronization error system is driven to the prescribed sliding manifold in fixed time. In addition, the global stability in fixed time of sliding mode dynamics is proved analytically. By means of the stochastic Lyapunov–Krasovskii functional approach, the synchronization condition is established in terms of linear matrix inequalities; moreover, the stochastic fixed settling-time can be determined to any desired values in advance, via the configuration of parameters in the proposed controller. Finally, two numerical examples are provided to demonstrate the validity of the theoretical results and the feasibility of the proposed approach.

  相似文献   

9.
10.
In this paper, projective synchronization of drive-response coupled dynamical network with delayed system nodes and coupling time-varying delay is investigated via impulsive control, where the scaling factors are different from each other. Different controllers are designed to achieve the projective synchronization: only impulsive control is used when the scaling factors need extra limitation, while an extra controller, that is, a simple linear feedback controller, is added when the scaling factors don??t need extra limitation. Based on the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization of such coupled network are established, and an estimate of the upper bound of impulsive intervals ensuring global exponential synchronization of drive-response coupled dynamical network is also given. Numerical examples on the time-delay Lorenz chaotic systems are presented finally to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

11.
12.
Liu  Maoxing  Wu  Jie  Sun  Yong-zheng 《Nonlinear dynamics》2017,89(4):2967-2977
Nonlinear Dynamics - In this paper, the finite-time outer synchronization between two complex dynamical networks with noise perturbation is considered. Combing the adaptive and finite-time control...  相似文献   

13.
In this paper, the synchronization of Takagi–Sugeno (T-S) fuzzy complex networks with time-varying delays and adaptive coupling weights is studied. Using the pinning control and adaptive feedback strategy, a new general class of complex networks with fuzzy logic is proposed and its synchronization is investigated in terms of linear matrix inequalities (LMIs). The adaptive update law of coupling weight is only related to the dynamical behaviors of directly connected nodes. Based on the Lyapunov stability theory, it is proven that the synchronization of the addressed network can be achieved under those control strategies. Finally, two numerical examples are given to verify the effectiveness of our theoretical results.  相似文献   

14.
In previous papers, the projective factors are always chosen as real numbers, real matrices, or even real-valued functions, which means the coupled systems evolve in the same or inverse direction simultaneously. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, the projective synchronization with respect to a complex factor, called complex projective synchronization (CPS), should be taken into consideration. In this paper, based on Lyapunov stability theory, three typical chaotic complex dynamical systems are considered and the corresponding controllers are designed to achieve the complex projective synchronization. Further, an adaptive control method is adopted to design a universal controller for partially linear systems. Numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

15.
Fan  Aili  Li  Junmin  Li  Jinsha 《Nonlinear dynamics》2020,100(3):2575-2593
Nonlinear Dynamics - In this paper, we focus on investigating the prescribed performance synchronization problems of complex dynamical networks with unknown time-varying coupling strength by...  相似文献   

16.
17.
18.
In this paper, the synchronization problem for a class of neutral complex dynamical networks with coupling time-varying delays is considered. A delay-dependent synchronization criterion is derived for the synchronization of neutral complex dynamical networks. By the use of a convex representation of the sector-restricted nonlinearity in system dynamics, the stability condition based on the discretized Lyapunov?CKrasovskii functional is obtained via LMI (linear matrix inequality) formulation. The effectiveness of our work is verified through a numerical example and simulation.  相似文献   

19.
This paper deals with the synchronization problem of complex dynamical networks with interval time-varying coupling delays. A simple local linear feedback controller is introduced to guarantee the synchronizability of the networks. Some delay-dependent synchronization conditions for the controlled complex dynamical networks are presented by using the Lyapunov–Krasovskii functional method and the reciprocally convex combination approach. Theoretical analysis and numerical examples show that the obtained conditions have less computational complexity and less conservatism than some recently reported ones.  相似文献   

20.
In drive-response complex-variable systems, projective synchronization with respect to a real number, real matrix, or even real function means that drive-response systems evolve simultaneously along the same or inverse direction in a complex plane. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, this paper investigates projective synchronization in drive-response networks of coupled complex-variable chaotic systems with respect to complex numbers, called complex projective synchronization (CPS). The adaptive feedback control method is adopted first to achieve CPS in a general drive-response network. For a special class of drive-response networks, the CPS is achieved via pinning control. Furthermore, a universal pinning control scheme is proposed via the adaptive coupling strength method, several simple and useful criteria for CPS are obtained, and all results are illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号