首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out.  相似文献   

2.
The double-diffusive convection in a horizontal fluid-saturated porous layer, which is heated and salted from below in the presence of Soret and Dufour effects, is studied analytically using both linear and nonlinear stability analyses. The linear analysis is based on the usual normal mode technique, while the nonlinear analysis is based on truncated representation of Fourier series. The generalized Darcy model that includes the time derivative is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effects of solute Rayleigh number, Lewis number, normalized porosity parameter, Vadasz number, Soret and Dufour parameters on the stationary, oscillatory convection, and heat and mass transfers are shown graphically. The Vadasz number has dual effect on the threshold of the oscillatory convection. Some known results are recovered as special cases of the present problem.  相似文献   

3.
The effect of rotation on the onset of double diffusive convection in a sparsely packed anisotropic porous layer, which is heated and salted from below, is investigated analytically using the linear and nonlinear theories. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and a dispersion relation are obtained analytically using linear theory. The effect of anisotropy parameters, Taylor number, Darcy number, solute Rayleigh number, Lewis number, Darcy–Prandtl number, and normalized porosity on the stationary, oscillatory and finite amplitude convection is shown graphically. It is found that contrary to its usual influence on the onset of convection in the absence of rotation, the mechanical anisotropy parameter show contrasting effect on the onset criterion at moderate and high rotation rates. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The effect of various parameters on heat and mass transfer is shown graphically. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

4.
Double diffusive convection in a rotating anisotropic porous layer, saturated by a viscoelastic fluid, heated from below and cooled from above has been studied making linear and non-linear stability analyses. The fluid and solid phases are considered to be in equilibrium. In momentum equation, we have employed the Darcy equation which includes both time derivative and Coriolis terms. The linear theory based on normal mode method is considered to find the criteria for the onset of stationary and oscillatory convection. A weak non-linear analysis based on minimal representation of truncated Fourier series analysis containing only two terms has been used to find the Nusselt number and Sherwood number as functions of time. We have solved the finite amplitude equations using a numerical scheme. The results obtained, during the above analyses, have been presented graphically and the effects of various parameters on heat and mass transfer have been discussed. Finally, we have drawn the steady and unsteady streamlines, isotherms, and isohalines for various parameters.  相似文献   

5.
The article deals with nonlinear thermal instability problem of double-diffusive convection in a porous medium subjected to temperature/gravity modulation. Three types of imposed time-periodic boundary temperature (ITBT) are considered. The effect of imposed time-periodic gravity modulation (ITGM) is also studied in this problem. In the case of ITBT, the temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent periodic part. The temperature of both walls is modulated in this case. In the problem involving ITGM, the gravity field has two parts: a constant part and an externally imposed time-periodic part. Using power series expansion in terms of the amplitude of modulation, which is assumed to be small, the problem has been studied using the Ginzburg–Landau amplitude equation. The individual effects of temperature and gravity modulation on heat and mass transports have been investigated in terms of Nusselt number and Sherwood number, respectively. Further the effects of various parameters on heat and mass transports have been analyzed and depicted graphically.  相似文献   

6.
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear coupled differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.  相似文献   

7.
In this article, linear and nonlinear thermal instability in a rotating anisotropic porous layer with heat source has been investigated. The extended Darcy model, which includes the time derivative and Coriolis term has been employed in the momentum equation. The linear theory has been performed by using normal mode technique, while nonlinear analysis is based on minimal representation of the truncated Fourier series having only two terms. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. Effects of parameters on critical Rayleigh number has also been investigated. A weak nonlinear analysis based on the truncated representation of Fourier series method has been used to find the Nusselt number. The transient behavior of the Nusselt number has also been investigated by solving the finite amplitude equations using a numerical method. Steady and unsteady streamlines, and isotherms have been drawn to determine the nature of flow pattern. The results obtained during the analysis have been presented graphically.  相似文献   

8.
O. D. Makinde 《Meccanica》2012,47(5):1173-1184
This paper examined the hydromagnetic mixed convection stagnation point flow towards a vertical plate embedded in a highly porous medium with radiation and internal heat generation. The governing boundary layer equations are formulated and transformed into a set of ordinary differential equations using a local similarity approach and then solved numerically by shooting iteration technique together with Runge-Kutta sixth-order integration scheme. A representative set of numerical results are displayed graphically and discussed quantitatively to show some interesting aspects of the pertinent parameters on the dimensionless axial velocity, temperature and the concentration profiles, local skin friction, local Nusselt number and local Sherwood number, the rate of heat and mass transfer. Good agreement is found between the numerical results of the present paper with the earlier published works under some special cases.  相似文献   

9.
The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subjected to a chemical reaction is numerically analyzed, by taking into account the diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects. The transformed governing equations are solved by a very efficient numerical method, namely, a modified version of the Keller-box method for ordinary differential equations. The parameters of the problem are Lewis, Dufour and Soret numbers, sustentation parameter, the order of the chemical reaction n and the chemical reaction parameter γ. Local Nusselt number and local Sherwood number variations and dimensionless concentration profiles in the boundary layer are presented graphically and in tables for various values of problem parameters and it is concluded that γ and n play a crucial role in the solution.  相似文献   

10.
A boundary layer analysis is presented for the natural convection past an isothermal sphere in a Darcy porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter N r, Brownian motion parameter N b, thermophoresis parameter N t, and Lewis number L e. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed.  相似文献   

11.
The present contribution deals with the thermophoresis particle deposition and thermal radiation effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by means of the fourth-order Runge–Kutta method with a shooting technique. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are tabulated and discussed.  相似文献   

12.
This article reports a numerical study of double-diffusive convection in a fluid-saturated vertical porous annulus subjected to discrete heat and mass fluxes from a portion of the inner wall. The outer wall is maintained at uniform temperature and concentration, while the top and bottom walls are adiabatic and impermeable to mass transfer. The physical model for the momentum equation is formulated using the Darcy law, and the resulting governing equations are solved using an implicit finite difference technique. The influence of physical and geometrical parameters on the streamlines, isotherms, isoconcentrations, average Nusselt and Sherwood numbers has been numerically investigated in detail. The location of heat and solute source has a profound influence on the flow pattern, heat and mass transfer rates in the porous annulus. For the segment located at the bottom portion of inner wall, the flow rate is found to be higher, whereas the heat and mass transfer rates are higher when the source is placed near the middle of the inner wall. Further, the average Sherwood number increases with Lewis number, while for the average Nusselt number the effect is opposite. The average Nusselt number increases with radius ratio (λ); however, the average Sherwood number increases with radius ratio only up to λ = 5, and for λ > 5 , the average Sherwood number does not increase significantly.  相似文献   

13.
The diffusion‐thermo and thermal‐diffusion effects on heat and mass transfer by mixed convection boundary layer flow over a vertical isothermal permeable surface embedded in a porous medium were studied numerically in the presence of chemical reaction with temperature‐dependent viscosity. The governing nonlinear partial differential equations are transformed into a set of coupled ordinary differential equations, which are solved numerically by using Runge–Kutta method with shooting technique. Numerical results are obtained for the velocity, temperature and concentration distributions, and the local skin friction coefficient, local Nusselt number and local Sherwood number for several values of the parameters, namely, the variable viscosity parameter, suction/injection parameter, Darcy number, chemical reaction parameter, and Dufour and Soret numbers. The obtained results are presented graphically and in tabulated form, and the physical aspects of the problem are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The linear and non-linear stability of a rotating double-diffusive reaction–convection in a horizontal anisotropic porous layer subjected to chemical equilibrium on the boundaries is investigated considering a Darcy model that includes the Coriolis term. The effect of Taylor number, mechanical, and thermal anisotropy parameters, reaction rate, solute Rayleigh number, Lewis number, and normalized porosity on the stability of the system is investigated. We find that the Taylor number has a stabilizing effect, chemical reaction may be stabilizing or destabilizing and that the anisotropic parameters have significant influence on the stability criterion. The effect of various parameters on the stationary, oscillatory, and finite-amplitude convection is shown graphically. A weak nonlinear theory based on the truncated representation of Fourier series method is used to find the finite amplitude Rayleigh number and heat and mass transfer.  相似文献   

15.
Thermal radiation, thermal diffusion, and diffusion-thermo effects on heat and mass transfer by mixed convection of non-Newtonian power-law fluids over a vertical permeable surface embedded in a saturated porous medium are investigated. The governing equations describing the problem are non-dimensionalized and transformed into a non-similar form. The transformed equations are solved by using the local non-similarity method combined with the shooting technique. The effects of the physical parameters of the problem on the fluid temperature and concentration are illustrated graphically and analyzed. Also, the effects of the pertinent parameters on the local Nusselt number and the local Sherwood number are presented.  相似文献   

16.
 The problem of combined heat and mass transfer by natural convection over a permeable cone embedded in a uniform porous medium in the presence of an external magnetic field and internal heat generation or absorption effects is formulated. The cone surface is maintained at either constant temperature and constant concentration or uniform heat and mass fluxes. In addition, the cone surface is assumed permeable in order to allow for possible fluid wall suction or blowing. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved numerically by an implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement between the results is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the temperature and concentration profiles as well as the local Nusselt number and the Sherwood number is illustrated graphically to show special trends of the solutions. Received on 5 June 2000 / Published online: 29 November 2001  相似文献   

17.
The effects of time-periodic boundary temperatures and internal heating on Nusselt number in the Bénard–Darcy convective problem has been considered. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small. By performing a weakly non-linear stability analysis, the Nusselt number is obtained in terms of the amplitude of convection, which is governed by the non-autonomous Ginzburg–Landau equation, derived for the stationary mode of convection. The effects of internal Rayleigh number, amplitude and frequency of modulation, thermo-mechanical anisotropies, and Vadasz number on heat transport have been analyzed and depicted graphically. Increasing values of internal Rayleigh number results in the enhancement of heat transport in the system. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system.  相似文献   

18.
A numerical study is performed to analyse heat and mass transfer phenomena due to natural convection in a composite cavity containing a fluid layer overlying a porous layer saturated with the same fluid. The flow in the porous region is modelled using Brinkman–Forchheimer-extended Darcy model that includes both the effect of macroscopic shear (Brinkman effect) and flow inertia (Forchheimer effect). The vertical walls of the two-dimensional enclosure are isothermal whilst the horizontal walls are adiabatic. The two regions are coupled by equating the velocity and stress components at the interface. The resulting coupled equations in non-dimensional form are solved by an alternating direction implicit method by transforming them into parabolic form by the addition of false transient terms. The numerical results show that the amount of fluid penetration into the porous layer depends strongly upon the Darcy, thermal and solutal Rayleigh numbers. Average Nusselt number decreases while average Sherwood number increases with an increase of the Lewis number. The transfer of heat and mass on the heated wall near the interface depends strongly on the Darcy number. Received on 11 May 1998  相似文献   

19.
An analysis is performed to study the effects of the chemical reaction and heat generation or absorption on a steady mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer. The governing boundary layer equations with boundary conditions are transformed into the dimensionless form by a group of nonsimilar transformations. Nonsimilar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique combined with an implicit finite difference scheme. The numerical computations are carried out for different values of dimensionless parameters to display the distributions of the velocity, temperature, concentration, local skin friction coefficient, local Nusselt number, and local Sherwood number. The results obtained indicate that the local Nusselt and Sherwood numbers increase with nonuniform slot suction, but nonuniform slot injection produces the opposite effect. The local Nusselt number decreases with heat generation and increases with heat absorption.  相似文献   

20.
A numerical study of double-diffusive natural convection in an enclosure with a partial vertical heat and mass sources for an aspect ratio Ar = 4 has been carried out. The influence of various dimensionless parameters (Rayleigh number, buoyancy ratio, source location, Lewis number, and source length) on the flow behavior are investigated. Correlations of average Nusselt and Sherwood numbers are obtained as function of two parameters (Ra, d) and (Le, d), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号