首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磷酸氢钙水解法合成羟基磷灰石纳米晶   总被引:1,自引:0,他引:1  
采用磷酸氢钙水解法和水热处理技术在模拟体液(SBF)介质中合成HA纳米晶,利用XRD研究了pH值、水热处理温度等制备工艺对合成HA纳米晶的影响。TEM、EDS和FTIR表征结果表明磷酸钙产物为长100 nm、直径10 nm的棒状含碳酸根羟基磷灰石纳米晶,其Ca/P比为1.69,这表明本工作获得的HA在组成与形态上与骨骼中的HA十分相似。  相似文献   

2.
《印度化学会志》2021,98(11):100191
Hydroxyapatite is a versatile compound resembling natural bone mineral. HAP insinuates feasibility with substitution ensuing in its application in various fields. The properties of calcium and strontium are cognate and pose as a bone-seeking trace-element that accumulates in new trabecular bone. Strontium substituted hydroxyapatite, Ca9.5Sr0.5(OH)2(PO4)6, was synthesized using citric acid as fuel and calcined 900 ​°C. The as-prepared product notably was characterized by powder X-ray diffraction, Fourier - Transform Infrared spectroscopy and Scanning Electron Microscope along with Energy Dispersive Spectroscopy. FT-IR analysis exhibited stretching and bending vibrations of (PO4)3- and OH groups along without any signal of carbonate group. Studies showed that product formed is strontium substituted hydroxyapatite, and calcination temperature plays an essential role in the formation of hydroxyapatite phase. The precursors when calcined resulted in 46–50 ​nm of Sr substituted hydroxyapatite.  相似文献   

3.
Background and aimsBone turnover is strongly affected by pH of surrounding fluid, and in turn plays a role in maintaining systemic pH, however the quantitative contribution of bone processes to pH regulation is not known. Our goal was to develop a mathematical model describing pH regulation in the interstitial fluid and to examine the contribution of hydroxyapatite dissolution and precipitation to pH regulation.Materials and methodsWe modeled twelve reversible equilibrium reactions of sixteen calcium, phosphate, hydrogen and carbonate species in the interstitial fluid and examined the buffering capacity and range. The effect of hydroxyapatite dissolution and precipitation was modeled by assuming that the calcium, phosphate and hydroxide contained in the bone volume adjacent to the interstitial fluid is instantaneously added to or removed from the interstitial fluid.ResultsThe carbonate buffer was found to dominate electrochemical buffering system of the bone interstitial fluid. Nevertheless, the phosphate added during dissolution of bone hydroxyapatite significantly improved the interstitial fluid buffering capacity. In contrast, hydroxyapatite precipitation had limited effect on the interstitial fluid pH regulation.ConclusionThis study provides mechanistic insights into the physicochemical processes underlying the known role of bone turnover processes in regulation of body pH homeostasis.  相似文献   

4.
Polymer particles coated with hydroxyapatite were prepared by treating Pd0 immobilized polystyrene-co-acrylic acid particles in aqueous CaCl2 and NaH2PO2 solutions. Hydroxyapatite coating took place at neutral to alkaline pH conditions, and the homogeneous growth of the hydroxyapatite layer on the surface of polymer particles was observed at relatively low temperature (30-50 degrees C). The thickness of the hydroxyapatite layer increased with reaction time. Copyright 1999 Academic Press.  相似文献   

5.
《印度化学会志》2023,100(4):100947
Hydroxyapatite nanoparticle plays a significant role in the field of biomedical industries such as tissue engineering and regenerative medicine, carriers for drug delivery, photocatalyst, biosensors, and membranes for heavy metal removal from polluted water. The present work aims to synthesize the hydroxyapatite from bio-waste materials like cuttlefish bone using a precipitation method by changing reaction temperatures (room temperature, 60 °C, 70 °C, and 80 °C), and pH (9,10,11, and 12). The structure, particle size, and crystallinity of the obtained HAp were evaluated by XRD analysis. The functional groups present in the HAp nanoparticles were analyzed and confirmed by FTIR spectroscopy. The surface morphology of the particles was analyzed by using FESEM and the particle sizes were ranging from 40 to 160 nm for different pH values. The elemental composition was determined by EDAX analysis. The antibacterial activity of the sample was tested against gram-positive and gram-negative bacteria. The zone of inhibition value against gram-negative bacteria was found to be 20 ± 0.32 mm and 16 ± 0.18 mm against gram-positive bacteria for the sample with a pH value of 10. The obtained results confirmed that the optimized temperature, time, and pH are suitable for the preparation of HAp with excellent desired properties, which is employed as a better candidate for biomedical applications.  相似文献   

6.
Bisphosphonates are a class of chemical compounds used to treat diseases caused by increased bone resorption. Zoledronate is a third‐generation bisphosphonate drug. Hydroxyapatite is main mineral constituent of bones, which can be bound by bisphosphonates in vivo. In this work, we report a method of nonlinear capillary electrochromatography for study on the interaction between hydroxyapatite and bisphosphonate. Hydroxyapatite was modified on the inner wall of capillary by a biomimetic‐mineralization method. Then nonlinear chromatography was used to fit and analyze the interaction between zoledronate and hydroxyapatite. The association rate constants of zoledronate in hydroxyapatite‐modified capillary and bare capillary are 642.3 and 195/M/min, respectively. This indicates that there is strong binding interactions and affinity between zoledronate and hydroxyapatite. Besides, the interaction between zoledronate and hydroxyapatite was confirmed further by ultraviolet spectroscopy. The method of nonlinear capillary electrochromatography provides a fast and effect approach for studying of bone metabolism disease by evaluation of interaction between hydroxyapatite and bisphosphonates.  相似文献   

7.
Hydroxyapatite (HA) coatings have received considerable attention because they exhibit bone bonding capabilities. Unfortunately the common forms of coating production result in cracking and degradation of HA due to the thickness of the coatings and the elevated temperatures employed. This study demonstrates the production of sub-micron, crack-free calcium phosphate coatings on quartz glass substrates using a sol-gel dip-coating technique and firing temperatures below 1000°C.Coatings fired at 1000°C comprised a mixture of hydroxyapatite (HA) and tricalcium phosphate (TCP). XPS analysis of the coating surface showed that the Ca/P ratio lay in the range 1.5–1.67, and that there was a contribution from carbon in the form of carbonate.It is proposed that the sol-gel coatings comprising a resorbable (TCP) and an insoluble (HA) phase have potential benefits in certain implant applications.  相似文献   

8.
Hydroxyapatite Ca10(PO4)6(OH)2 has attracted widespread interest from both orthopedic and dental fields due to its excellent biocompatibility and tissue bioactivity properties. Since nanophase materials can mimic the dimensions of constituent components of natural tissues, the implants developed from nanophase material could serve as a successful alternative. However, the defects of hydroxyapatite ceramics, mainly brittleness and low fracture toughness, have been overcome by the use of nanophase hydroxyapatite coatings on the implant surfaces that integrate the good mechanical properties of metals and the bioactivity of hydroxyapatite. In the present investigation, Sol?Cgel hydroxyapatite was prepared from two different phosphorus precursors such as triethyl phosphate and phosphorus pentoxide respectively with calcium nitrate tetrahydrate as a calcium precursor. The effects of pH and liquid P31 Nuclear Magnetic Resonance spectroscopy for the solution aged at different periods were investigated and the synthesized hydroxyapatite powder was characterized by Transmission electron microscopy, X-ray Powder Diffraction, Fourier transform infrared spectroscopy and thermal analysis respectively. In order to fully understand the bioactivity of the synthesized materials, they were coated on 316L Stainless Steel implant surface by spin coating method at the spin speed of 2,000 Revolutions per minute. The effect of nanoparticles on the surface of 316L Stainless Steel implant was studied by adhesive strength measurements. The corrosion resistance property of the hydroxyapatite coatings was evaluated by electrochemical impedance analysis. From the results, it was observed that the hydroxyapatite coatings obtained from different precursors have very high resistance to corrosion with higher adhesive strength.  相似文献   

9.
Using solution strontium and pH as independent variables, the metastable equilibrium solubility (MES) behavior of two carbonated apatite (CAP) samples has been examined, a high-crystallinity CAP (properties expected to be similar to dental enamel) and a low-crystallinity CAP (properties expected to be similar to bone mineral). CAP samples were prepared by precipitation/digestion: (CAP A: high-crystallinity, 1.3 wt% CO3, synthesized at 85 degrees C; CAP B: low-crystallinity, 6.4 wt% CO3, synthesized at 50 degrees C). Baseline MES distributions were determined in a series of 0.1 M acetate buffers containing only calcium and phosphate (no strontium) over a broad range of solution conditions. To assess the influence of strontium, MES profiles were determined in a similar fashion with 20, 40, 60, and 80% of the solution calcium being replaced on an equal molar basis by solution strontium. To determine the correct function governing CAP dissolution, ion activity products (IAPs) were calculated from the compositions of buffer solutions based on the hydroxyapatite template (Ca(10-n)Sr(n)(PO4)6(OH)2 (n = 0-10)) and the calcium/hydroxide deficient hydroxyapatite template (Ca(9-n)Sr(n)(HPO4)(PO4)5OH (n = 0-9)). Findings: (a) for CAP A, at high solution strontium/calcium ratios, the MES profiles were essentially superimposable when the solution IAPs were calculated using the stoichiometry of Ca6Sr4(PO4)6(OH)2 and for CAP B by a stoichiometry of Ca7Sr2(HPO4)(PO4)5OH; (b) for CAP A, at low strontium/calcium ratios, the stoichiometry yielding MES data superpositioning was found to be that of hydroxyapatite and for CAP B, that of calcium/hydroxide deficient hydroxyapatite. When other stoichiometries were assumed, good superpositioning of the data was not possible.  相似文献   

10.
Hydroxyapatite due to its good biocompatibility and similar chemical composition to the mineral part of bone has found various applications in tissue engineering. Porous hydroxyapatite has high surface area, which leads to excellent osteoconductivity and resorbability, providing fast bone ingrowth. In this study, highly porous body of nanostructure hydroxyapatite was successfully fabricated via gelcasting method. The pure phase of hydroxyapatite was confirmed by X-ray diffraction. The result of scanning electron microscopy analysis showed that the prepared scaffold has highly interconnected spherical pores with a size in the range 100–400 μm. The crystallite size of the hydroxyapatite scaffold was measured in the range 30–42 nm. The mean values of true (total) and apparent (interconnected) porosity were calculated in the range 84–91 and 70–78%, respectively. The maximum values of compressive strength and elastic modulus of the prepared scaffold were found to be about 1.5 MPa and 167 MPa, respectively, which were achieved after sintering at 1,000 °C for 4 h. Transmission electron microscopy analysis showed that the particle sizes are smaller than 80 nm. In vitro test showed good bioactivity of the prepared scaffold. The mentioned properties could make the hydroxyapatite scaffold a good candidate for tissue engineering applications, especially applications that did not need to stand any loading.  相似文献   

11.
The coprecipitation of strontium by a calcium phosphate phase formed at an elevated pH 10.8 was investigated. The first phase obtained under these conditions in the amorphous calcium phosphate (ACP) which is transformed into crystalline hydroxyapatite (HA) after the induction period. Is has been shown that this transformation together with morphological changes of the precipitated solid phase, influences the amount of the sorbed strontium significantly. The possible consequences of this finding on practical application of coprecipitation of strontium by calcium phosphate have been discussed.  相似文献   

12.
Bio sustainable hydrogels including tunable morphological and/or chemical cues currently offer a valid strategy of designing innovative systems to enhance healing/regeneration processes of damaged tissue areas. In this work, TEMPO-oxidized cellulose nanofibrils (T-CNFs) were embedded in alginate (Alg) and polyvinyl alcohol (PVA) solution to form a stable mineralized hydrogel. A calcium chloride reaction was optimized to trigger a crosslinking reaction of polymer chains and mutually promote in situ mineralization of calcium phosphates. FTIR, XRD, SEM/EDAX, and TEM were assessed to investigate the morphological, chemical, and physical properties of different mineralized hybrid hydrogels, confirming differences in the deposited crystalline nanostructures, i.e., dicalcium phosphate dehydrate (DCPDH) and hydroxyapatite, respectively, as a function of applied pH conditions (i.e., pH 4 or 8). Moreover, in vitro tests, in the presence of HFB-4 and HSF skin cells, confirmed a low cytotoxicity of the mineralized hybrid hydrogels, and also highlighted a significant increase in cell viability via MTT tests, preferentially, for the low concentration, crosslinked Alg/PVA/calcium phosphate hybrid materials (<1 mg/mL) in the presence of hydroxyapatite. These preliminary results suggest a promising use of mineralized hybrid hydrogels based on Alg/PVA/T-CNFs for bone and wound healing applications.  相似文献   

13.
The cathodic electrolysis of H2O2 (H2O2 + e → OH + OH) on a metal surface in the presence of calcium and phosphate ions results in the formation of calcium phosphate deposits on the metal surface. In this study, the deposits formed under various treatment conditions (pHs, concentrations and ratios of calcium/phosphate ions, and so on) were characterized by scanning electron spectroscopy (SEM), and X-ray diffractometry. The exclusive formation of hydroxyapatite, HAP, was observed under comparatively narrow conditions (pH 3–4, [Ca+]/[PO43−] = 25 mM/15 mM), which is clearly different from the reported conditions for the deposition of HAP on titanium substrates. HAP was deposited in the form of a layer, comprised of morphologically amorphous HAP flakes that were less than 20 nm thick. SEM and FTIR analyses of the deposit at different stages of H2O2-electrolysis revealed that a few dozen nanometer-sized spheres of amorphous calcium phosphate were formed in the first step and then fused with each other to form ribbon-like flakes of HAP or broken glass-like brushite, depending on the pH. The pH for HAP formation on a stainless steel surface was markedly lower than that used for titanium, and the observed process by which amorphous calcium phosphate is converted to HAP was markedly different from that for the electrochemical deposition (electrolysis of water) of HAP on a titanium substrate.  相似文献   

14.
Calcium carbonate particles with various shapes were prepared by the reaction of sodium carbonate with calcium chloride in the absence and presence of a polyacrylic acid (PAA) at 25°C and 80°C, respectively. The as-prepared products were characterized with scanning electron microscopy and X-ray diffraction. The effects of pH, temperatures, aging time and concentration of PAA and CaCO3 on the crystal form and morphologies of the as-prepared CaCO3 were investigated. The results show that pH, temperatures, concentration of PAA and CaCO3 are important parameters for the control of morphologies of CaCO3. Various crystal morphologies of calcite, such as, plates, rhombohedras, rectangles, ellipsoids, cubes, etc. can be obtained depending on the experimental conditions. Especially, the monodispersed cubic calcite particles can be produced by PAA addition at 80°C. Moreover, higher temperature is beneficial to the formation of monodispersed cubic or rectangular calcite particles. This research may provide new insight into the control of morphologies of calcium carbonate and the biomimetic synthesis of novel inorganic materials.  相似文献   

15.
The size distributions of fibroblast growth factor-2 (FGF-2) in aqueous solutions with neutral pH were investigated with a dynamic light scattering technique. We found that the FGF-2 was distributed in dimer or trimer form at concentrations of 0.1-1.0 mg . mL(-1). An aggregate with a hydrodynamic radius of approximately 90 nm coexisted with this and its proportion increased with a decrease in concentration. At lower concentrations (less than 0.10 mg . mL(-1)) FGF-2 aggregates with an average radius of 80-100 nm were dominant and were stable for more than a day. These FGF-2 solutions were mixed with calcium phosphate solutions to produce a sub-micron sized compound of FGF-2 and hydroxyapatite, which could be used as a biological implant that possessed a pharmacological function for bone formation. By utilizing a transformation from amorphous calcium phosphate to hydroxyapatite, FGF-2 was effectively incorporated into polycrystals of hydroxyapatite.SEM photograph of a mixture of hydroxyapatite and FGF-2.  相似文献   

16.
The physical and chemical properties of a hydroxyapatite produced by the sintering of bovine bone were investigated by powder x-ray diffraction (PXRD), electron spin resonance (ESR), energy dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential thermal analysis (DTA). A bovine bone powder was sintered at different temperatures ranging from 500 to 1400 °C. The influences of post-irradiation storage on the radiation ESR response of the bovine bone powder before and after sintering were also studied. The results indicate that the sintered bovine bone powder contained hydroxyapatite. Diffraction patterns were sharp and clear based on the (211), (300), and (202) reflections corresponding to bovine hydroxyapatite (BHA), which confirmed the phase purity and high crystalline grade of the BHA produced. The PXRD profile of BHA was dependent on sintering temperatures and times. The molecular formula of BHA was determined by Rietveld analysis showed a similar structure and composition to calcium hydroxyapatite in hexagonal P63/m space group a=b=9.435 Å and c=6.895 Å. ESR data showed that the sintering process can decrease the number of free radicals in BHA; it also revealed that the number of free radicals is constant during long storage periods (75 days). The sintering technique described in this study may be used to extract hydroxyapatite from biowaste bovine bone, leading to its application as a bone filler.  相似文献   

17.
Samples of human dental enamel and hydroxyapatite were equilibrated at 5 mg/40 ml for 9 days at 37 degrees C with acetate buffers adjusted to a range of saturations with respect to hydroxyapatite. Sigmoidal apparent solubility distributions, in which the fraction dissolved was plotted against--log(ion activity product for hydroxyapatite) (pIHA), were constructed. About 10% of the hydroxyapatite and 14% of the enamel was very soluble, dissolving even at pIHA 55. The apparent solubility distributions for both solids were invariant with pH (4.5, 5.0, 5.5), within experimental error, showing that solubility was controlled by a phase with the stoichiometry of hydroxyapatite, probably in the form of a surface layer or complex on the crystals, in agreement with other studies on carbonate-apatites and bone mineral. The pIHA at 50% dissolution was employed as an average value. The pIHA (50%) values for pooled data (58.76 for enamel and 60.17 for hydroxyapatite) were lower than the respective pIHA previously measured by conventional equilibration techniques. However, the average pIHA measured for enamel was higher than that obtained by the same technique in another study, possibly because of differences in specimen preparation and equilibration time. The possible implications of the findings for understanding the process of dental caries are discussed.  相似文献   

18.
Hydroxyapatite nanoparticles were obtained in the course of reaction in microemulsion system stabilized by surfactant (sodium bis-2-ethylhexylsulfosuccinate). By the methods of X-ray phase analysis, IR spectroscopy, elemental analysis, and electron microscopy the presence of crystals in the samples of hydroxyapatite as the main phase, and detected the formation of additional calcium phosphate compounds was demonstrated.  相似文献   

19.
Three types of calcium precursors (nitrate, hydroxide and catbonate) were used in the synthesis of carbonated hydroxyapatite (cHA) using a precipitation method via a chemical reaction with di-ammonium hydrogen phosphate as the phosphate precursor. The precipitation method was chosen over many other methods due to its flexibility to changes in processing parameters to control the phases formed, the particle size, as well as, the morphology of the as-synthesized powders. The focus of the study was on cHA as it is deemed to mimic the composition of the human bone much closer as compared to the stoichiometric hydroxyapatite. When the chemical reaction was completed, the precipitate was dried, ground and characterized by x-ray diffraction (XRD), electron microscopy (both FESEM and TEM) and particle size analysis. Only the nitrate precursor produced a single-phase carbonated hydroxyapatite (cHA), whilst the other two precursors produced a secondary calcite phase or did not react fully. This is due to the low solubility of the calcium hydroxide and the incomplete reaction of the calcium carbonate. An increase in pH has been observed to lead to higher carbonate content in the synthesized cHA and a smaller crystallite size.  相似文献   

20.
The distribution of strontium between the milk components, i.e., serum, casein micelles, whey and hydroxyapatite was determined. The sorption on hydroxyapatite was investigated using batch method and radiotracer technique. The aqueous phase comprised of either milk or whey. The sorption of strontium on hydroxyapatite depended on the method of its preparation and on the composition of the aqueous phase. The sorption of strontium was increased with an increase of pH. The presence of citrate species resulted in decrease of the sorption of strontium on hydroxyapatite. The sorption of 85Sr on hydroxyapatite decreased with the increasing concentration of Ca2+ ions. Addition of Ca2+ ions to milk resulted in milk pH decrease. The decrease in pH value after calcium addition to milk is related to exchanges between added calcium and micellar H+. The average value of strontium sorption on casein micelles in milk with presence of hydroxyapatite was (47.3 ± 5.6) %. The average value of sorption of 85Sr on casein micelles in milk without the addition of hydroxyapatite was (68.9 ± 2.2) %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号