首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A conducting dusty gas flow in the presence of a given applied magnetic field is modelled by an initial boundary value problem. The continuous dependence of solutions backward in time to this model is studied. The electric and induced magnetic fields are assumed to be negligible and the dust particles are non-conducting. A uniqueness result is also derived.  相似文献   

2.
A boundary value problem for an elliptic system of equations is studied that arises in the analysis of a new hydrodynamic model describing charge transport in a planar semiconductor MESFET (metal semiconductor field effect transistor). The problem has a number of features, specifically, the equations of the system involve squared components of the gradients of the unknown functions; the boundary conditions are of a mixed character, i.e., Dirichlet and Neumann conditions are set on different portions of the boundary; and the boundary of the domain is a nonsmooth curve, namely, a rectangle. Under a certain optimal condition, the C 1,α-regularity of a weakened solution of the problem is justified and its existence is proved, while its uniqueness is shown under additional constraints. The results are used to justify the stabilization method as applied to finding approximate stationary solutions of the hydrodynamic model.  相似文献   

3.
We consider a problem on the diffraction of electromagnetic field on a cluster of permeable particles placed in a plane-layered medium. The completeness and closedness of the system of basis functions used in the representation of the fields is proved, and the convergence of the approximate solution to the exact solution of the original boundary value diffraction problem is shown.  相似文献   

4.
We consider time-harmonic electromagnetic waves propagating in a homogeneous three-dimensional unbounded chiral medium where a perfect conductor has been immersed. Assuming that the incident electric field is a superposition of plane incident electric waves, the corresponding scattered field and the far-field pattern are expressed as the superposition of the scattered fields and the far-field patterns respectively. It is also proved that the sets of far-field patterns are complete if and only if there does not exist an eigenfunction to the interior perfect conductor problem that vanishes on the boundary of the scatterer which is an electric Herglotz field. The Left-Circularly Polarized and the Right-Circularly Polarized far-field operators are defined and studied and using them the electric far-field operator is defined too. The properties of the above operators and Herglotz functions are related to the solution of the interior perfect conductor boundary value problem.  相似文献   

5.
A variational approach to the numerical modelling of forced lateral motions of an Euler–Bernoulli elastic beam is developed for a number of linear boundary conditions using the method of integrodifferential relations. A class of linear boundary actions is considered. A family of quadratic functionals, connecting the displacement field of points of the beam with the bending-moment functions in the cross section and the momentum density is proposed. Variational formulations of the original initial-boundary value problem on the motion of the beam are given and the necessary conditions for the functionals introduced to be stationary are analysed. The integral and local quality characteristics of the admissible approximate solutions are determined. The relation between the variational problems, formulated for the beam model, with the classical Hamilton–Ostrogradskii variational principles is demonstrated. An algorithm for constructing approximate systems of ordinary differential equations is developed, the solution of which yields stationary (minimum) values of the functionals introduced on a specified set of displacement fields, moments and momenta. Examples of calculations of the displacements for an elastic beam and an analysis of the quality of the numerical solutions obtained are presented.  相似文献   

6.
This work gives a mathematical model for an acoustically penetrable or electromagnetically dielectric half-plane. An approximate boundary condition is used that depends on the thickness of, and the material constants for, the half-plane. A solution is obtained, by using the approximate boundary condition, for the problem of a line source field diffracted by a penetrable/dielectric half-plane. The asymmetry of the approximate boundary condition results in a matrix Wiener–Hopf problem, which is solved explicitly.  相似文献   

7.
We study the free boundary problem for a plasma–vacuum interface in ideal incompressible magnetohydrodynamics. Unlike the classical statement when the vacuum magnetic field obeys the div-curl system of pre-Maxwell dynamics, to better understand the influence of the electric field in vacuum, we do not neglect the displacement current in the vacuum region and consider the Maxwell equations for electric and magnetic fields. Under the necessary and sufficient stability condition for a planar interface found earlier by Trakhinin, we prove an energy a priori estimate for the linearized constant coefficient problem. The process of derivation of this estimate is based on various methods, including a secondary symmetrization of the vacuum Maxwell equations, the derivation of a hyperbolic evolutionary equation for the interface function, and the construction of a degenerate Kreiss-type symmetrizer for an elliptic-hyperbolic problem for the total pressure.  相似文献   

8.
A model equation of Painlevé II type was introduced by Bass in 1964 in connection with a boundary value problem which describes the electric field distribution in a region x > 0 occupied by an electrolyte. This is possibly the earliest explicit physical application of a Painlevé equation to be found in the literature. Here we return to this problem informed by the subsequent discovery of a Bäcklund transformation for Painlevé II. This enables us to construct exact representations for the electric field and ion distributions for boundary value problems wherein the ratio of fluxes of the positive and negative ions at the boundary adopts one of an infinite sequence of values.  相似文献   

9.
The main aim of this theoretical study is to verify the uniqueness of the solution of boundary value problem defined by specifying the tangential components of the electromagnetic field over the closed regular boundary of a limited region containing a linear dielectric material. So, we have evaluated the components of the electric and magnetic fields and found that both fields do not vanish in any subregion or region, and the uniqueness of the solution is proved in case of both fixed and continuously varying dielectric.  相似文献   

10.
A boundary element method is introduced to approximate the solution of a scattering problem for the Helmholtz equation with a generalized Fourier–Robin‐type boundary condition given by a second‐order elliptic differential operator. The formulation involves three unknown fields, but is free from any hypersingular integral. Existence and uniqueness of the solution are established using a Babuška inf–sup condition. When implementing the method, a lumping process allows to remove two fields from the formulation. The numerical solution has thus the same cost as the one of a problem relative to a usual Neumann boundary condition. Numerical tests confirm the ability of the method for solving this type of non‐standard boundary value problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
We consider extremal problems for the time-harmonic Maxwell equations with mixed boundary conditions for the electric field. Namely, the tangential component of the electric field is given on one part of the boundary, and an impedance boundary condition is posed on the other part. We prove the solvability of the original mixed boundary value problem and the extremal problem. We obtain sufficient conditions on the input data ensuring the stability of solutions of specific extremal problems under certain perturbations of both the performance functional and some functions occurring in the boundary value problem.  相似文献   

12.
The problem under consideration is that of the scattering of time periodic electromagnetic fields by metallic obstacles. A common approximation here is that in which the metal is assumed to have infinite conductivity. The resulting problem, called the perfect conductor problem, involves solving Maxwell's equations in the region exterior to the obstacle with the tangential component of the electric field zero on the obstacle surface. In the interface problem different sets of Maxwell equations must be solved in the obstacle and outside while the tangential components of both electric and magnetic fields are continuous across the obstacle surface. Solution procedures for this problem are given. There is an exact integral equation procedure for the interface problem and an asymptotic procedure for large conductivity. Both are based on a new integral equation procedure for the perfect conductor problem. The asymptotic procedure gives an approximate solution by solving a sequence of problems analogous to the one for perfect conductors.  相似文献   

13.
A plane problem of electroelasticity is considered for an infinite compound plate with a hole located in both constituents of the plate. The corresponding boundary value problems is reduced to a system of singular integral equations of second kind, which is solved in numerical quadratures. Calculation results are presented that describe the concentration of electroelastic fields near the hole upon action at infinity of the vectors of mechanical stresses and electric field strength.Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 3, pp. 359–366, May–June, 1999.  相似文献   

14.
可压缩可混溶油、水两相渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性偶合偏微分方程组的动边值问题.本文对二维有界域的两类边值问题提出一类新的特征差分格式,应用区域变换、时间的变步长、粗细网格配套、变分形式、先验估计的理论和技巧,得到了最佳阶l2误差估计结果.将J.Douglas,Jr.提出的著名方法,成功地拓广到这一新领域,并得到实质性进展.它对这一领域的模型分析,数值方法和软件研制均有重要的价值.  相似文献   

15.
Currently there are many international microbarograph networks for high-resolution recording of wave pressure variations on the Earth’s surface. This arouses interest in wave propagation in the atmosphere generated by atmospheric pressure variations. A full system of nonlinear hydrodynamic equations for atmospheric gases with lower boundary conditions in the form of wavelike pressure variations on the Earth’s surface is considered. Since the wave amplitudes near the Earth’s surface are small, linearized equations are used in the analysis of well-posedness of the problem. With the help of a wave energy functional method, it is shown that in the non-dissipative case the solution to the boundary value problem is uniquely determined by the variable pressure field on the Earth’s surface. The corresponding dissipative problem is well-posed if, in addition to the pressure field, appropriate conditions on the velocity and temperature on the Earth’s surface are given. In the case of an isothermal atmosphere, the problem admits analytical solutions that are harmonic in the variables x and t. A good agreement between the numerical and analytical solutions is obtained. The study shows that the temperature and density can rapidly vary at the lower boundary of the boundary value problem. An example of solving the three-dimensional problem with variable pressure on the Earth’s surface taken from experimental observations is given. The developed algorithms and computer programs can be used to simulate atmospheric waves generated by pressure variations on the Earth’s surface.  相似文献   

16.
The article presents a new general solution to a loaded differential equation and describes its properties. Solving a linear boundary value problem for loaded differential equation is reduced to the solving a system of linear algebraic equations with respect to the arbitrary vectors of general solution introduced. The system's coefficients and right sides are computed by solving the Cauchy problems for ordinary differential equations. Algorithms of constructing a new general solution and solving a linear boundary value problem for loaded differential equation are offered. Linear boundary value problem for the Fredholm integro‐differential equation is approximated by the linear boundary value problem for loaded differential equation. A mutual relationship between the qualitative properties of original and approximate problems is obtained, and the estimates for differences between their solutions are given. The paper proposes numerical and approximate methods of solving a linear boundary value problem for the Fredholm integro‐differential equation and examines their convergence, stability, and accuracy.  相似文献   

17.
A frequency domain singular boundary method is presented for solving 3D time-harmonic electromagnetic scattering problem from perfect electric conductors. To avoid solving the coupled partial differential equations with fundamental solutions involving hypersingular terms, we decompose the governing equation into a system of independent Helmholtz equations with mutually coupled boundary conditions. Then the singular boundary method employs the fundamental solutions of the Helmholtz equations to approximate the scattered electric field variables. To desingularize the source singularity in the fundamental solutions, the origin intensity factors are introduced. In the novel formulation, only the origin intensity factors for fundamental solutions of 3D Helmholtz equations and its derivatives need to be considered which have been derived in the paper. Several numerical examples involving various perfectly conducting obstacles are carried out to demonstrate the validity and accuracy of the present method.  相似文献   

18.
The scattering of plane time‐harmonic electromagnetic waves propagating in a homogeneous isotropic chiral environment by a bounded perfectly conducting obstacle is studied. The unique solvability of the arising exterior boundary value problem is established by a boundary integral method. Integral representations of the total exterior field, as well as of the left and right electric far‐field patterns are derived. A low‐frequency theory for the approximation of the solution to the above problem, and the derivation of the far‐field patterns is also presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Under study are the extremal problems of multiplicative boundary control for timeharmonic Maxwell’s equations considered with the impedance boundary condition for the electric field. The solvability of the original extremal problem is proved. Some sufficient conditions are derived on the original data which guarantee the stability of solutions to concrete extremal problems with respect to certain perturbations of both the quality functional and one of the known functions that has the meaning of the density of the electric current.  相似文献   

20.
We develop a mathematical model of the boundary value problem describing magnetic field shielding by a cylindrical thin-walled shell (screen) made of materials whose permeability depends nonlinearly on the magnetic field intensity. Integral boundary conditions on the shell surface are used. A numerical method is suggested for solving a nonlinear boundary value problem of magnetostatics with integral boundary conditions. The shielding efficiency coefficient characterizing the external magnetic field attenuation when passing into the interior of the cylindrical screen is studied numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号