首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A rapid and selective high-throughput HESI-LC-MS/MS method for determining eight cytochrome P450 probe drugs in one-step extraction and single run was developed and validated. The four specific probe substrates midazolam, dextromethorphan, tolbutamide, theophylline and their metabolites 1-hydroxymidazolam, dextrorphan, hydroxyl(methyl)tolbutamide, 1,3-dimethyluric acid, together with the deuterated internal standards, were extracted from rat plasma using a novel 96-well Hybrid-SPE™-precipitation technique. The bioanalytical assay was based on reversed phase liquid chromatography coupled with tandem mass spectrometry in the positive ion mode using selected reaction monitoring for drug (-metabolite) quantification. All analytes were separated simultaneously in a single run that lasted less than 11 min. The intra- and inter-day precisions for all eight substrates/metabolites were 1.62–12.81% and 2.09–13.02%, respectively, and the relative errors (accuracy) for the eight compounds ranged from −9.62% to 7.48% and −13.84% to 8.82%. Hence, the present method provides a robust, fast and reproducible analytical tool for the evaluation of four major drug metabolising cytochrome P450 (3A4, 2C9, 1A2 and 2D6) activities with a cocktail approach in rats to clarify herb–drug interactions. The method can be used as a basic common validated high-throughput analytical assay for in vivo interaction studies.  相似文献   

2.
Summary Direct chiral-phase HPLC methods have been developed for the determination of flurbiprofen and its major metabolites, namely 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen, in biological fluids using a derivatized amylose chiral stationary phase (CSP; Chiral-pak AD). Quantification of all three analytes, both free and conjugated, in urine was carried out following liquid-liquid extraction using tandem ultraviolet (UV) and fluorescence detection. Determination of flurbiprofen and the 4′-hydroxy-metabolite in plasma utilized the same CSP but required modification in the mobile phase composition and sole use of fluorescence detection. The urine assay was linear (r>0.998) between 0.05–10 μg mL−1, 0.1–20 μg mL−1 and 0.01–2 μg mL−1 for the enantiomers of flurbiprofen, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen respectively. The plasma assay was linear (r>0.997) between 0.1–6 μg mL−1 and 0.01–0.6 μg mL−1 for the enantiomers of flurbiprofen and 4′-hydroxyflurbiprofen respectively. Both assays, typically yielded within- and between-day imprecision and accuracy values less than 10% for the enantiomers of the different analytes. Initial volunteer studies suggest that the disposition of flurbiprofen displays modest enantioselectivity in humans.  相似文献   

3.
A simple and sensitive assay was developed and validated for the simultaneous quantification of rosuvastatin acid (RST), rosuvastatin-5S-lactone (RST-LAC), and N-desmethyl rosuvastatin (DM-RST), in buffered human plasma using liquid chromatography–tandem mass spectrometry (LC-MS/MS). All the three analytes and the corresponding deuterium-labeled (d6) internal standards were extracted from 50 μL of buffered human plasma by protein precipitation. The analytes were chromatographically separated using a Zorbax-SB Phenyl column (2.1 mm × 100 mm, 3.5 μm). The mobile phase comprised of a gradient mixture of 0.1% v/v glacial acetic acid in 10% v/v methanol in water (solvent A) and 40% v/v methanol in acetonitrile (solvent B). The analytes were separated at baseline within 6.0 min using a flow rate of 0.35 mL/min. Mass spectrometry detection was carried out in positive electrospray ionization mode. The calibration curves for all three analytes were linear (R ≥ 0.9964, n = 3) over the concentration range of 0.1–100 ng/mL for RST and RST-LAC, and 0.5–100 ng/mL for DM-RST. Mean extraction recoveries ranged within 88.0–106%. Intra- and inter-run mean percent accuracy were within 91.8–111% and percent imprecision was ≤15%. Stability studies revealed that all the analytes were stable in matrix during bench-top (6 h on ice–water slurry), at the end of three successive freeze and thaw cycles and at −80°C for 1 month. The method was successfully applied in a clinical study to determine the concentrations of RST and the lactone metabolite over 12-h post-dose in patients who received a single dose of rosuvastatin.  相似文献   

4.
Opioids such as morphine are the cornerstone of pain treatment. The challenge of measuring the concentrations of morphine and its active metabolites in order to assess human pharmacokinetics and monitor therapeutic drugs in children requires assays with high sensitivity in small blood volumes. We developed and validated a semi-automated LC-MS/MS assay for the simultaneous quantification of morphine and its active metabolites morphine 3β-glucuronide (M3G) and morphine 6β-glucuronide (M6G) in human plasma and in dried blood spots (DBS). Reconstitution in water (DBS only) and addition of a protein precipitation solution containing the internal standards were the only manual steps. Morphine and its metabolites were separated on a Kinetex 2.6-μm PFP analytical column using an acetonitrile/0.1% formic acid gradient. The analytes were detected in the positive multiple reaction mode. In plasma, the assay had the following performance characteristics: range of reliable response of 0.25–1000 ng/mL (r 2 > 0.99) for morphine, 1–1,000 ng/mL (r 2 > 0.99) for M3G, and 2.5–1,000 ng/mL for M6G. In DBS, the assay had a range of reliable response of 1–1,000 ng/mL (r 2 > 0.99) for morphine and M3G, and of 2.5–1,000 ng/mL for M6G. For inter-day accuracy and precision for morphine, M3G and M6G were within 15% of the nominal values in both plasma and DBS. There was no carryover, ion suppression, or matrix interferences. The assay fulfilled all predefined acceptance criteria, and its sensitivity using DBS samples was adequate for the measurement of pediatric pharmacokinetic samples using a small blood of only 20–50 μL.  相似文献   

5.
An analytical procedure was developed and validated for the simultaneous identification and quantification of nicotine, cotinine, trans-3′-hydroxycotinine, and norcotinine in 0.5 mL of human oral fluid collected with the Quantisal™ oral fluid collection device. Solid phase extraction and liquid chromatography-tandem mass spectrometry with multiple reaction monitoring were utilized. Endogenous and exogenous interferences were extensively evaluated. Limits of quantification were empirically identified by decreasing analyte concentrations. Linearity was from 1 to 2,000 ng/mL for nicotine and norcotinine, 0.5 to 2,000 ng/mL for trans-3′-hydroxycotinine, and 0.2 to 2,000 ng/mL for cotinine. Correlation coefficients for calibration curves were >0.99 and analytes quantified within ±13% of target at all calibrator concentrations. Suitable analytical recovery (>91%) was achieved with extraction efficiencies >56% and matrix effects <29%. This assay will be applied to the quantification of nicotine and metabolites in oral fluid in a clinical study determining the most appropriate nicotine biomarker concentrations differentiating active, passive, and environmental nicotine exposure.  相似文献   

6.
A new and simple isocratic high-performance liquid chromatographic method with ultraviolet detection is described for simultaneous determination of active guaiphenesin and preservative sodium benzoate in Liqufruta garlic cough medicine formulation. The chromatographic separation was achieved using a Zorbax CN; 150 mm × 4.6 mm and 5 μm particle size column employing acetonitrile and water (20: 80, v/v) containing 0.1% formic acid (pH 3.5 ± 0.05) as the mobile phase. The method was validated with respect to linearity, range, precision, accuracy, specificity, limit of detection and limit of quantitation. The both analytes were detected by UV-Vis detector at 245 nm. The method was linear over the concentration range of 0.2–0.8 mg/mL and 0.02–0.06 mg/mL for guaiphenesin and sodium benzoate, respectively. The limit of detection was found to be 0.14 μg/mL for GP and 0.06 μg/mL for SB and the quantification limit was 0.54 μg/mL for GP and 0.22 for SB. Accuracy, evaluated as recovery, was in the range of 97.8–100.0%. Intra-day precision and intermediate precision showed relative standard deviation <1% in each case.  相似文献   

7.
A liquid chromatography tandem mass spectrometry method for buprenorphine (BUP), norbuprenorphine (NBUP), methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine, benzoylecgonine, ecgonine methyl ester (EME), morphine, codeine, 6-acetylmorphine, heroin, 6-acetylcodeine, cotinine, and trans-3′-hydroxycotinine quantification in sweat was developed and comprehensively validated. Sweat patches were mixed with 6 mL acetate buffer at pH 4.5, and supernatant extracted with Strata-XC-cartridges. Reverse-phase separation was achieved with a gradient mobile phase of 0.1% formic acid and acetonitrile in 15 min. Quantification was achieved by multiple reaction monitoring of two transitions per compound. The assay was a linear 1–1,000 ng/patch, except EME 5–1,000 ng/patch. Intra-, inter-day and total imprecision were <10.1%CV, analytical recovery 87.2–107.7%, extraction efficiency 35.3–160.9%, and process efficiency 25.5–91.7%. Ion suppression was detected for EME (−63.3%) and EDDP (−60.4%), and enhancement for NBUP (42.6%). Deuterated internal standards compensated for these effects. No carryover was detected, and all analytes were stable for 24 h at 22 °C, 72 h at 4 °C, and after three freeze/thaw cycles. The method was applied to weekly sweat patches from an opioid-dependent BUP-maintained pregnant woman; 75.0% of sweat patches were positive for BUP, 93.8% for cocaine, 37.5% for opiates, 6.3% for methadone and all for tobacco biomarkers. This method permits a fast and simultaneous quantification of 14 drugs and metabolites in sweat patches, with good selectivity and sensitivity.  相似文献   

8.
For the first time, a simple, selective and accurate high-performance liquid chromatography method with ultraviolet detection was developed and validated to quantify simultaneously three structurally related antiepileptic drugs; carbamazepine, oxcarbazepine, and the recently launched eslicarbazepine acetate and their main metabolites, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and licarbazepine. The method involves a solid-phase extraction and a reverse-phase C18 column with 5 cm length. The mobile phase consisting of water, methanol, and acetonitrile in the ratio 64:30:6 was selected as the best one and pumped at 1 mL/min at 40 °C. The use of this recent column and an aqueous mobile phase instead of buffers gives several advantages over the method herein developed; namely the fact that the chromatographic analysis takes only 9 min. The method was validated according to the guidelines of the Food and Drug Administration, showing to be accurate (bias within ±12%), precise (coefficient variation <9%), selective and linear (r 2 > 0.997) over the concentration range of 0.05–30 μg/mL for carbamazepine; 0.05–20 μg/mL for oxcarbazepine; 0.15–4 μg/mL for eslicarbazepine acetate; 0.1–30 μg/mL for carbamazepine-10,11-epoxide; 0.1–10 μg/mL for 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and 0.1–60 μg/mL for licarbazepine. It was also shown that this method can adequately be used for the therapeutic drug monitoring of the considered antiepileptic drugs, carbamazepine, oxcarbazepine, eslicarazepine acetate, and their metabolites.  相似文献   

9.
The aim of the proposed work was to develop and validate a simple and sensitive assay for the analysis of atorvastatin (ATV) acid, ortho- and para-hydroxy-ATV, ATV lactone, and ortho- and para-hydroxy-ATV lactone in human plasma using liquid chromatography-tandem mass spectrometry. All six analytes and corresponding deuterium (d5)-labeled internal standards were extracted from 50 μL of human plasma by protein precipitation. The chromatographic separation of analytes was achieved using a Zorbax-SB Phenyl column (2.1 mm × 100 mm, 3.5 μm). The mobile phase consisted of a gradient mixture of 0.1% v/v glacial acetic acid in 10% v/v methanol in water (solvent A) and 40% v/v methanol in acetonitrile (solvent B). All analytes including ortho- and para-hydroxy metabolites were baseline-separated within 7.0 min using a flow rate of 0.35 mL/min. Mass spectrometry detection was carried out in positive electrospray ionization mode, with multiple-reaction monitoring scan. The calibration curves for all analytes were linear (R 2 ≥ 0.9975, n = 3) over the concentration range of 0.05–100 ng/mL and with lower limit of quantitation of 0.05 ng/mL. Mean extraction recoveries ranged between 88.6–111%. Intra- and inter-run mean percent accuracy were between 85–115% and percent imprecision was ≤ 15%. Stability studies revealed that ATV acid and lactone forms were stable in plasma during bench top (6 h on ice-water slurry), at the end of three successive freeze and thaw cycles and at −80 °C for 3 months. The method was successfully applied in a clinical study to determine concentrations of ATV and its metabolites over 12 h post-dose in patients receiving atorvastatin.  相似文献   

10.
Thyroid hormones are essential hormones for regulating growth and development in humans and wildlife. Methods to monitor precise and low levels of these hormones in serum and tissues are needed to assess overall health, whether from disease considerations or possibly from environmental contaminant exposures. Common and routine methods typically rely upon radioimmunoassays, which can be expensive, and typically only measure thyroxine and 3,3′,5-triidothyronine, which can be a limitation in fully evaluating impacts on thyroid regulation. In this study we developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the simultaneous analysis of five thyroid hormones—thyroxine, 3,3′,5-triidothyronine, 3,3′,5′-triiodothyronine, 3,3′-diiodothyronine, and 3,5-diiodothyronine—in serum samples. The LC-MS/MS parameters were optimized and calibrated over a wide concentration range (1.0–500 ng/mL) with on-column detection limits of 1.5–7.0 pg. With use of spiked bovine serum samples, the mean method recoveries were calculated to be 81.3–111.9% with relative standard deviations of 1.2–9.6% at spiking levels ranging from 10 to 100 ng/mL. This method was compared with measurements made by standard radioimmunoassays and with measurements made in a serum Standard Reference Material (SRM 1951b). Development of this method expands the capacity to measure thyroid hormones by including a larger suite of thyroid hormones, and has promising applications for measuring catabolism of thyroid hormones in vitro.  相似文献   

11.
A simple and solvent-minimized procedure for the determination of six commonly found synthetic polycyclic musks in aqueous samples using ultrasound-assisted dispersive liquid–liquid microextraction (UA-DLLME) coupled with gas chromatography–mass spectrometry (GC-MS) is described. The parameters affecting the extraction efficiency of analytes from water samples were systematically investigated. The best extraction conditions involved the rapid injection of a mixture of 1.0 mL of isopropyl alcohol (as a dispersant) and 10 μL of carbon tetrachloride (as an extractant) into 10 mL of water containing 0.5 g of sodium chloride in a conical-bottom glass tube. After ultrasonication for 1.0 min and centrifugation at 5,000 rpm (10 min), the sedimented phase 1.0 μL was directly injected into the GC-MS system. The limits of quantitation (LOQs) were less than 0.6 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), was less than 11% for both intra- and interday analysis. Accuracy, expressed as the mean extraction recovery, was between 71 and 104%. Their total concentrations were determined in the range from 8.3 to 63.9 ng/L in various environmental samples by using a standard addition method.  相似文献   

12.
The first method for quantifying cannabinoids and cannabinoid glucuronides in whole blood by liquid chromatography–tandem mass spectrometry (LC–MS/MS) was developed and validated. Solid-phase extraction followed protein precipitation with acetonitrile. High-performance liquid chromatography separation was achieved in 16 min via gradient elution. Electrospray ionization was utilized for cannabinoid detection; both positive (Δ9-tetrahydrocannabinol [THC] and cannabinol [CBN]) and negative (11-hydroxy-THC [11-OH-THC], 11-nor-9-carboxy-THC [THCCOOH], cannabidiol [CBD], THC-glucuronide, and THCCOOH-glucuronide) polarity were employed with multiple reaction monitoring. Calibration by linear regression analysis utilized deuterium-labeled internal standards and a 1/x 2 weighting factor, yielding R 2 values >0.997 for all analytes. Linearity ranged from 0.5 to 50 μg/L (THC-glucuronide), 1.0–100 μg/L (THC, 11-OH-THC, THCCOOH, CBD, and CBN), and 5.0–250 μg/L (THCCOOH-glucuronide). Imprecision was <10.5% CV, recovery was >50.5%, and bias within ±13.1% of target for all analytes at three concentrations across the linear range. No carryover and endogenous or exogenous interferences were observed. This new analytical method should be useful for quantifying cannabinoids in whole blood and further investigating cannabinoid glucuronides as markers of recent cannabis intake.  相似文献   

13.
A methodology for the determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and methamphetamine (MA) in seized tablets using gas chromatography with a flame ionization detector (GC-FID) is described. The chromatographic conditions, i.e. gas flow rates and temperatures for the column, injector and detector were optimized. The optimum chromatographic conditions were as follows: a CP-SIL 24 CB WCOT fused silica capillary column (30 m × 0.32 mm I.D., 0.25 μm film thickness), N2 carrier gas flowing at 2.6 mL/min, injector temperature at 290°C and detector temperature at 300°C. The oven temperature was ramped from 80°C at a rate of 20°C/min to final temperature of 270°C (1 min). All analytes were well separated within 7 min with an analysis time of 10.5 min. Calibration curves were linear over the concentration ranges of 3.125–200 μg/mL for MDMA and 6.25–200 μg/mL for MDA and MA (r > 0.990). The intra- and inter-day precisions for determining all analytes were 2.32–10.38% RSD and 1.15–9.77% RSD, respectively. The intra- and inter-day accuracies ranged from −19.79 to +17.51% DEV and −6.84 to +5.2% DEV, respectively. The lower limits of quantification (LLOQs) were 3.125 μg/mL for MDMA and 6.25 μg/mL for MDA and MA. All analytes were stable at room temperature during 24 h but significant loss occurred after 2-month storage at −20°C. The method was shown to be useful for determining the purity of MDMA in seized tablets.  相似文献   

14.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and an established biomarker for endothelial function, while symmetric dimethylarginine (SDMA), an emerging biomarker for renal function, has been shown to outperform creatinine-based equations for estimated glomerular filtration rate. In order to study these analytes for clinical research, a fast and simple method for measuring arginine (ARG), SDMA, and ADMA in plasma by liquid chromatography–tandem mass spectrometry (LC-MS/MS) has been developed. Plasma (50 μL) was mixed with 50 μL of internal standard of 13C-arginine and d7-ADMA followed by protein precipitation with methanol containing 1% ammonium acetate (300 μL). After centrifugation, the supernatant (100 μL) was mixed with 300 μL of acetonitrile with 1% formic acid, and the mixture was injected onto a silica column monitored by a mass spectrometer. The analytical cycle time was 5.0 min. The method was linear from 5.7 to 489.7 μM for ARG, 0.06 to 5.15 μM for SDMA, and from 0.34 to 5.65 μM for ADMA, with an accuracy of 99.0–120.0%. Total coefficients of variation for all analytes ranged from 2.7% to 7.7% for three concentration levels. The effects of hemolysis, lipemia, uremia, icterus, specimen tube types, storage at different temperature, and freeze/thaw were thoroughly investigated. Reference ranges were established using 51 well-defined reference subjects (12 men and 39 women, age 19–64 years): 53.1–129.7 μM for ARG, 0.32–0.65 μM for SDMA, and 0.36–0.67 μM for ADMA. In conclusion, the validated LC-MS/MS method described here offers a fast and reliable ARG, SDMA, and ADMA quantitation in plasma with minimum sample preparation.  相似文献   

15.
Phosphatidylethanol (PEth), which is formed extrahepatically by the action of phospholipase D on phosphatidylcholine in the presence of ethanol, has been suggested as a promising marker of alcohol misuse. Analysis of dried blood spots (DBS) is particularly advantageous for the determination of delicate analytes such as PEth. Therefore, measurement of PEth species (18:1/18:1, 16:0/18:1) in DBS versus whole blood was performed to ascertain whether respective results are directly comparable. Samples were obtained from subjects (n = 40) undergoing alcohol detoxification treatment. Analysis involved liquid–liquid extraction from both, DBS and whole blood (100 μL, respectively), with phosphatidylpropanol as the internal standard. Extracts were subjected to LC gradient separation using multiple reaction monitoring of deprotonated molecules. Results from measurements of corresponding DBS and whole blood specimens were compared by estimating the respective mean values and by a Bland and Altman analysis. Concentrations of PEth 18:1/18:1 ranged from 46.1 to 3,360 ng/mL in whole blood (mean, 461.7 ng/mL) and from 35.8 to 3,360 ng/mL in DBS (mean, 457.6 ng/mL); for PEth 16:0/18:1, concentrations were from 900 to 213,000 ng/mL (mean, 23,375 ng/mL) and 922–213,000 ng/mL (mean, 23,470 ng/mL) in blood and DBS, respectively. Estimated mean differences were −4.3 ng/mL for PEth 18:1/18:1 and 95.8 ng/mL for PEth 16:0/18:1. The Bland–Altman plot of both PEth species showed that the variation around the mean difference was similar all through the range of measured values and that all differences except one were within the limits of agreement. It could be shown that the determination of PEth species in DBS is as reliable as in whole blood samples. This assay may facilitate monitoring of alcohol misuse.  相似文献   

16.
Picogram levels of antibodies against the protective antigen (PA) of Bacillus anthracis were detected in an automated electrochemical sandwich-type enzyme-linked immunosorbant assay. The antibodies were captured and detected using an 8 × 3 array of 50-μm-diameter cavities. The reagent and sample volumes were as low as 200 nL in a less than 25-min assay from capture to signal generation. The electrochemical detection of the antibodies was demonstrated at 0.05–10 μg/mL containing only 10–5,000 pg antibodies. The limit of detection is 10 fg for a 200-nL sample. Detection of anti-PA immunoglobulin G performed in spiked normal human serum and fresh whole human blood did not show a significant difference from detection in a buffer. The initial automation of the assay involved the use of a digital syringe pump for the delivery of reagents to the capture surface.  相似文献   

17.
Serotonin is a major neurotransmitter and affects various functions both in the brain and in the rest of the body. It has been demonstrated that altered serotinergic function is implicated in various psychiatric disorders including depression and schizophrenia. Serotonin has also been implicated along with dopamine in attention deficit–hyperkinetic disorder (AD-HKD). This study provides a versatile validated method for the analysis of serotonin, hydroxyindole acetic acid and dopamine in urine using LC-MS/MS. This method was then used to quantify these analytes in a test group of 17 children diagnosed with severe AD-HKD. This group was compared to a matched control group to investigate the possibility that one of these compounds may be a potential biomarker for this condition. The developed method provided good linear calibration curves for the multiplex assay of analytes in urine (0.05–3.27 nmol/L; R 2 ≥ 0.9977). Acceptable inter-day repeatability was achieved for all analytes with RSD values (n = 9) ranging from 1.1% to 9.3% over a concentration range of 0.11–3.27 μmol/L in urine. Excellent limits of detection (LOD) and limits of quantitation (LOQ) were achieved with LODs of 8.8–18.2 nmol/L and the LOQs of 29.4–55.7 nmol/L for analytes in urine. Recoveries were in the ranges of 98–104%, 100–106% and 91–107% for serotonin, 5-HIAA and dopamine, respectively. An appropriate sample clean-up procedure for urine was developed to ensure efficient recovery and reproducibility on analysis. Evaluation of matrix effects was also carried out and the influence of ion suppression on analytical results reported. Confirmatory analysis was carried out on a linear trap quadrupole-Orbitrap mass spectrometer to obtain high mass accuracy data of the target analytes in the clinical samples.  相似文献   

18.
Electron-capture gas chromatography was carried out to determine midazolam and its three hydroxy metabolites (1-hydroxymethylmidazolam, 4-hydroxymidazolam and 1-hydroxymethyl-4-hydroxymidazolam) in human plasma. The assay involves extraction from plasma, buffered to pH 9.3, into cyclohexane-dichloromethane (6:4) and analysis by gas chromatography. The use of an HP-17 cross-linked, capillary column makes derivatization unnecessary. The sensitivity of the method was 2-3 ng/ml for midazolam, 1-hydroxymethylmidazolam and 4-hydroxymidazolam, and 20 ng/ml for 1-hydroxymethyl-4-hydroxymidazolam. The extraction recovery of midazolam, 1-hydroxymethylmidazolam, 4-hydroxymidazolam and 1-hydroxymethyl-4-hydroxymidazolam was 99.3 +/- 2.4, 67.0 +/- 4.6, 92.7 +/- 4.7 and 28.7 +/- 6.3%, respectively. This gas chromatographic assay was used to assess the concentration-time profiles of midazolam and its metabolites in human plasma after rectal and intravenous administration of midazolam.  相似文献   

19.
A sensitive and effective method for simultaneous determination of triazolopyrimidine sulfonamide herbicide residues in soil, water, and wheat was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The four herbicides (pyroxsulam, flumetsulam, metosulam, and diclosulam) were cleaned up with an off-line C18 SPE cartridge and detected by tandem mass spectrometry using an electrospray ionization source in positive mode (ESI+). The determination of the target compounds was achieved in <2.0 min. The limits of detection were below 1 μg kg−1, while the limits of quantification did not exceed 3 μg kg−1 in different matrices. Quantitation was determined from calibration curves of standards containing 0.05–100 μg L−1 with r 2 > 0.997. Recovery studies were conducted at three spiked levels (0.2, 1, and 5 μg kg−1 for water; 5, 10, and 100 μg kg−1 for soil and wheat). The overall average recoveries for this method in water, soil, wheat plants, and seeds at three levels ranged from 75.4% to 106.0%, with relative standard deviations in the range of 2.1–12.5% (n = 5) for all analytes.  相似文献   

20.
This study reports the development and validation of a method using hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) for the analysis of cocaine and its metabolites benzoylecgonine (BE), ecgonine methyl ester (EME), and cocaethylene (CE) in hair samples. Decontamination was performed as follows: Firstly, the aliquot of hair was briefly rinsed with 2 mL dichloromethane, then was washed three times with 10 mL 0.01 M phosphate buffer, pH 6, for 15 min, followed by 2 mL 2-propanol for less than 2 min, and, finally, a last rinse with 2 mL dichloromethane was again done. Cocaine compounds were extracted from 10 mg of hair by incubation with 2 mL 0.1 M HCl at 50 °C for 12 h and purified by solid phase extraction with Oasis MCX cartridges. Analysis was performed by LC-MS/MS using an Atlantis HILIC silica chromatographic column. The method was fully validated. Linearity was established over the concentration range 0.020–10.0 ng/mg for cocaine (COC), 0.010–10.0 ng/mg for BE and CE, and 0.005–2.0 ng/mg for EME, and the correlation coefficients were all >0.99. Extraction efficiency was >70% for all analytes. Limits of detection were 0.0005 ng/mg for CE and 0.001 ng/mg for the other analytes (COC, BE, and EME). Lower limits of quantification were the lowest points of the calibration curves with acceptable accuracy and precision (coefficient of variation ≤20%). Intra- and inter-day imprecision ranged between 1.5% and 9.5% and 0.7% and 12.6%, respectively. Intra- and inter-day inaccuracy ranged from 0.5% to 12.3% and from 0.7% to 7.1%, respectively. With regard to matrix effects, suppression was <27.5% in all cases. The method was applied to the analysis of several samples derived from forensic cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号