首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between plasma properties and cutting performance for a plasma arc cutting system was investigated. Plasma properties such as temperature and composition were measured using spectroscopic techniques in a 200 amp oxygen plasma cutting system. In addition to the plasma properties, the symmetry of the cylindrical cutting arc was also quantified. Cutting performance was measured by analyzing the edge quality of sample cuts. The most important measure of edge quality for this study was the angle of the cut edge. Operating parameters investigated included the effect of shield gas flow and geometry changes caused by cathode erosion. The measured plasma properties are used to account for the observed increase in recommended cutting speed for different consumable designs which operated at the same current level. A strong correlation was also shown between the measured arc symmetry and the cutting performance.  相似文献   

2.
Direct current plasma torches for plasma spraying applications generate electric arc instabilities. The resulting fluctuations of input electrical power hamper a proper control of heat and momentum transfers to materials for coating deposition. This paper gives an overview of major issues about arc instabilities in conventional DC plasma torches. Evidences of arc fluctuations and their consequences on plasma properties and on material treatments are illustrated. Driving forces applied to the arc creating its motion are described and emphasis is put on the restrike mode that depends on the arc reattachment and the boundary layer properties around the arc column. Besides the arc root shown as a key region of instability, the Helmholtz oscillation is also described and accounts for the whole plasma torch domain that can generate pressure fluctuations coupled with voltage ones.  相似文献   

3.
The influence of nozzle length and two process parameters (arc current, mass flow rate) on the plasma cutting arc is investigated. Modeling results show that nozzle length and these two process parameters have essential effects on plasma arc characteristics. Long nozzle torch can provide high velocity plasma jet with high heat flux. Both arc voltage and chamber pressure increase with the nozzle length. High arc current increases plasma velocity and temperature, enhances heat flux and augments chamber pressure and thus, the shock wave. Strong mass flow has pinch effect on plasma arc inside the torch, enhances the arc voltage and power, therefore increases plasma velocity, temperature and heat flux.  相似文献   

4.
A tomographic optical system and method based on evaluations of plasma radiation in a wavelength range of 559–601 nm were used to acquire temperature distributions in an air plasma cutting torch in planes perpendicular to the arc axis with a time resolution of 1 μs. The derived frequency spectra and distributions of temperature fluctuations represented by standard deviations have shown significant variations in distributions of instabilities, depending on the time scales which are taken into account. The results confirmed the decisive role of arc current ripple modulation in the arc temperature fluctuations.  相似文献   

5.
Spectroscopic measurements were performed by observing the plasma inside the kerf during cutting of stainless steel using direct current electric arc. Experiments were carried out on the plasma torch operated with the plasma gas composed of the vaporized mixture of water and ethanol; arc current was 60 A and cutting speed 30 cm/min. Emission spectral lines of neutral iron were used to experimental evaluation of the temperature of plasma in the kerf and close under the cut plate. Complicated nature of the plasma inside the kerf, including presence of metallic vapours and departures from equilibrium, was taken into account. Hence relatively reliable results were obtained, from which it was possible to get insight into the energy balance and cutting performance of the torch. Temperature of the plasma in the kerf was substantially lower than at the nozzle exit of the torch; however the temperature drop along the kerf was small.  相似文献   

6.
Heat Generation and Particle Injection in a Thermal Plasma Torch   总被引:1,自引:0,他引:1  
The operation of plasma guns used for plasma spraying involves a continuous movement of the anode arc root. The resulting fluctuations of voltage and thermal energy input introduce an undesirable element in the spray process. This paper deals with the effects of these arc instabilities on the plasma jet, and the behavior of particles injected in the flow. The first part refers to the formation of the plasma jet. Measurements show that the static behavior of the arc depends strongly upon the plasma-forming gas mixture, especially the mass flow rate, of the heavy gas, injection mode, nozzle diameter, and arc current. These parameters control the electric field in the arc column, the arc length, its stability, and the gas velocity and temperature. The dynamic behavior of the arc is examined to determine how the tempeature and velocity of the plasma gas vary with voltage variations. Relationships between the gas velocity at the nozzle exit and the lifetime of the arc roots, and the independent operating parameters of the gun can be established from a dimensional analysis. The second part discusses the interaction between the plasma jet and the particles injected into the flow. The parameters controlling particle injection and trajectory are examined to determine how injection velocity must vary with particle size and density to achieve a given trajectory. The effect of the transverse injection of the powder carrier gas is investigated using a 3-D computational fluid dynamics code. Finally, the effect of the jet fluctuations on particle trajectory is studied under the assumption that the jet velocity follows the voltage variation. The result is a continuous variation of the particle spray jet position in the flow. Experimental observations confirm the model predictions.  相似文献   

7.
The influence of two nozzle geometries and three process parameters (arc current, arc length and plasma sheath gas flow rate) on the energy distribution for an argon transferred arc is investigated. Measurements are reported for a straight bore cylindrical and for a convergent nozzle, with arc currents of 100 A and 200 A and electrode gaps of 10 mm and 20 mm. These correspond to typical operating parameters generally used in plasma transferred arc cutting and welding operations. The experimental set up consisted of three principal components: the cathode-torch assembly, the external, water-cooled anode, and the reactor chamber. For each set of measurements the power delivered to each system component was measured through calorimetric means, as function of the arc’s operating conditions. The results obtained from this study show that the shape of the cathode torch nozzle has an important influence on arc behaviour and on the energy distribution between the different system components. A convergent nozzle results in higher arc voltages, and consequently, in higher powers being generated in the discharge for the same applied arc current, when compared to the case of a straight bore nozzle. This effect is attributed to the fluidynamic constriction of the arc root attachment, and the consequential increase in the arc voltage and thus, in the Joule heating. The experimental data so obtained is compared with the predictions of a numerical model for the electric arc, based on the solution of the Navier–Stokes and Maxwell equations, using the commercial code FLUENT©. The original code was enhanced with dedicated subroutines to account for the strong temperature dependence of the thermodynamic and transport properties under plasma conditions. The computational domain includes the heat conduction within the solid electrodes and the arc-electrode interactions, in order to be able to calculate the heat distribution in the overall system. The level of agreement achieved between the experimental data and the model predictions confirms the suitability of the proposed, “relatively simple” model as a tool to use for the design and optimization of transferred arc processes and related devices. This conclusion was further supported by spectroscopic measurements of the temperature profiles present in the arc column and image analysis of the intensity distribution within the arc, under the same operating conditions.  相似文献   

8.
Double arcing phenomenon is a limit to increasing the capacity of the plasma cutting torch. In an attempt to enhance the ability of being invulnerable to the double arcing, a double nozzle structure is introduced in this paper. The reason why the double nozzle structure is less vulnerable to the double arcing phenomenon than single nozzle structure is explored. Double nozzle structure allows the longer nozzle which may cause stronger shock wave. In order to evaluate the influence of shock wave on the cutting ability, the influence of nozzle length on the double nozzle structure plasma arc is investigated. The modeling results show that the longer nozzle produces the stronger shock wave outside the nozzle outlet, but the energy flux and momentum flux become concentrated after the shock wave and increases with the increasing of nozzle length. So the double nozzle structure improves the cutting ability of the plasma torch and meanwhile be less vulnerable to the double arcing phenomenon.  相似文献   

9.
Instabilities of thermal plasma jets were studied on the basis of analysis of plasma radiation fluctuations recorded by an array of high frequency photodiodes. Characteristic frequencies of jet oscillations were found and spatial distribution of amplitude of plasma fluctuations was determined. The influence of arc current ripple on plasma instabilities was investigated for two types of power supply—classical thyristor controlled unit with the frequency of the current ripple 300 Hz and the rectifier with the high frequency converter and frequency of the current modulation 30 kHz. Generation of boundary layer instability with the current modulation frequency and its harmonics was proved using fast Fourier transform, contour plots and phase portraits. It was found that the character of fluctuations of plasma jet was substantially influenced by current ripple with the frequency or its harmonics close to the frequency of oscillations generated by boundary layer instability.  相似文献   

10.
Dielectric properties of air plasma in a model circuit break were investigated. A chemically non-equilibrium (non-CE) model was used to simulate the arc dynamic behavior inside the nozzle during current zero period. Distribution of the critical breakdown electric field Ecr of hot air was derived from the electron energy distribution function by solving the Boltzmann transport equation, using calculated temperature, pressure and species composition. Then, the electric field at applied recovery voltage (Ea) was calculated. The probability of dielectric breakdown inside the nozzle can be predicted by comparing Ea and Ecr. The results show that neglect of departure from chemical equilibrium may lead to the overestimation of the dielectric recovery strength of circuit breaker arc during the first several hundred microseconds after current zero.  相似文献   

11.
Optical emission spectroscopy has been used to investigate the characteristics of a plasma jet produced by a steam arc cutting torch operated in air at atmospheric pressure. A procedure has been developed for simultaneous determination of temperature and pressure in the plasma jet as well as an effective nonequilibrium factor. It is based on comparison of a few experimental and simulated spectral quantities. The experimental data were obtained from the spectrum of Hβ and OII lines centred at 480 nm. The existence of the shock wave structure characteristic of an underexpanded jet can clearly be deduced from the measured properties. In the first expansion region, the centreline pressure drops from about 1.4 atm at the nozzle exit to about 0.7 atm a few tenths of millimeter downstream. On the contrary, the centreline temperature remains almost unchanged within this region and reaches the value of about 23,000 K.  相似文献   

12.
A numerical analysis of the influence of different nozzle configurations on the plasma flow characteristics inside D.C plasma torches is presented to provide an advanced nozzle design basis for plasma spraying torches. The assumption of steady-state, axis-symmetric, local thermodynamic equilibrium, and optically thin plasma is adopted in a two-dimensional modeling of plasma flow inside the plasma torch. The PHOENICS software is used for solving the governing equations, i.e. the conservation equations of mass, momentum, and energy along with the equations describing the K-epsilon model of turbulence. The calculated arc voltages are consistent with the experimental results when arc current, gas inflow rate, and working gas are the same as the experimental parameters. Temperature, axial velocity contours inside plasma torches, profiles along the torch axis and profiles at the outlet section are presented to show the plasma flow characteristics. Comparisons are made among those torches. The results show that torches with different anode nozzle configurations produce different characteristics of plasma flows, which suggest some important ideas for the advanced nozzle design for plasma spraying. In order to validate the model and to show its level of predictivity, a comparison of the model with experimental results encountered in the literature is presented in the last part.  相似文献   

13.
The characteristics of the plasma jet emanating from a dc non-transferred plasma torch is affected by many factors including arc current, type of gas, gas flow rate, gas injection configuration and torch geometry. The present work focuses on experimental investigation of the influence of shroud gas injection configuration on the I–V characteristics and electro-thermal efficiency of a dc non-transferred plasma torch operated in nitrogen at atmospheric pressure. The plasma gas is injected into the torch axially and shroud gas is injected through three different nozzles such as normal, sheath and twisted nozzles. The effects of flow rates of plasma/axial gas and arc current on I–V characteristics and electro-thermal efficiency of the torch holding different nozzles are investigated. The I–V characteristics and electro-thermal efficiency of the torch are found to be strongly influenced by the shroud gas injection configuration. The effect of arc current on arc voltage decreases with increasing the axial gas flow rate. At higher axial gas flow rate (>?45 lpm), the I–V characteristics of the plasma torch are similar irrespective of the nozzle used. The variation of electro-thermal efficiency with arc current is almost similar to that of arc voltage with arc current. As expected, the electro-thermal efficiency is increased when the axial gas flow rate is increased and at higher axial gas flow rate, it is not influenced by the arc current and shroud gas configuration. The plasma torch with normal nozzle may be better in the range of operating conditions used in this study.  相似文献   

14.
The arc root fluctuations at the anode-nozzle of a d.c. plasma spray torch with a special configuration of the electrodes allowing to work with the same gas flowrate with nozzle diameters ranging from 6 to 10 mm were systematically studied. The plasma gas was Ar/H2 (25 vol % H2), the current was varied between 200 and 600 A and the plasma gas flowrate between 24 and 80 slm. After 30–60 mn working the nozzle wall started to be sufficiently eroded to have a stagnant arc spot which lived until arcing created another one. It was shown that the life time of the upstream arc spots were 30–40 % longer than the downstream ones which could play an important role in the electrode erosion. Dimensional analysis allowed to find a relationship between the nozzle diameter D, the arc current I and gas flow rate G and the mean spot lifetime which is closely connected with the difference between D and the electrical diameter of the arc column. The comparison of voltage signal and light emission at a point of the plasma jet close to the nozzle exit on its axis allowed to determine the mean electrical field within the plasma column and the mean position of the arc root. The comparison with the electrode erosion area for well defined conditions showed a good correlation with the calculated arc root position.  相似文献   

15.
A supersonically expanding cascaded arc plasma in argon is analyzed axperimentally by emission spectroscopy. The thermal cascaded arc plasma is allowed to expand through a conically shaped nozzle in the arc anode into the vacuum vessel. In the nozzle monomers (C n H v ) are injected. The monomers are dissociated and ionized by the argon carrier plasma, and transported toward a substrate by means of the expansion. Emission spectroscopy is used to obtain temperatures and particle densities. By varying external parameters (e.g., arc power, gas flow rates) plasma parameters can be linked with (e.g. parameters (e.g., refractive index).  相似文献   

16.
The performance of pressure-driven membrane processes may be significantly improved when unsteady fluid instabilities are superimposed on crossflow. The role of fluid mechanics, in particular unsteady secondary flows resulting from surface roughness, flow pulsations and centrifugal instabilities, coupled to solute mass transfer is discussed with respect to depolarization and defouling of membranes. Various possible mechanisms including wall shear rate and repeated renewal of the mass boundary layer are analyzed. The secondary flow pattern in a spiral crossflow filter has been visualized and shows a uniform velocity field with a steep gradient adjacent to the membrane surface. Unsteady flows of this type have been used with ultrafiltration and microfiltration membranes to show the efficacy of secondary flows. Significant dissipation with repeated renewal of the mass transfer boundary layer due to secondary flows is used to explain the multiple increase in membrane permeation rates.  相似文献   

17.
Determination of the arc-root position in a DC plasma torch   总被引:4,自引:0,他引:4  
The behavior of an arc operated in the nontransferred mode with a conical-shaped cathode and a nozzle-shaped anode is studied by applying general tyro-dimensional conservation equations and auxiliary relations for the simulation of arc channel flows. The position of the arc-root attachment at the anode surface is determined by using Steenbeck's minimum principle, which postulates a minimum arc voltage for a given current and certain given boundary conditions. The overall effects of the anode-arc root on the plasma flow are, studied by comparing the results with those of the transferred mode of operation. Specific arc-channel diameters are chosen in the simulation in order to verify flit, numerical model through comparisons with experimental results. The results show that Steenbeck's minimum principle is useful for determining the position of the arc-root attachment at the anode surface. Application of this method for control of the arc-anode attachment may be valuable in the design and operation of plasma spray torches to avoid jet instabilities.  相似文献   

18.
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 times its diameter could be generated with a DC arc torch by restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including arc channel geometry, gas flow rate, and feeding methods, etc. Influence of flow turbulence at the torch nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent arc jet.  相似文献   

19.
Wire-Arc Spray Modeling   总被引:5,自引:0,他引:5  
A model is presented describing the details of the wire-arc spray process. The model consists of several submodels each treating a different part of the process. A compressible flow model describes the supersonic nozzle flow upstream of the wire tips. The arc is described by a 3-D arc in cross-flow model using different boundary conditions for the cathode and the anode boundary. The resulting temperature and velocity contours serve as upstream boundary for a 2-D turbulent jet model. Particle generation and acceleration is described by treating the initial droplet formation for the anode and the cathode wire separately and then using the resulting particle size and velocity distributions in a secondary break-up model. Comparison with some experimental results show acceptable agreement. This modeling approach may be used for optimization of wire-arc spray equipment.  相似文献   

20.
Two-dimensional modeling results are presented concerning the subsonic–supersonic flow and heat transfer within a DC plasma torch used for low-pressure (or soft vacuum) plasma spraying. The so-called fictitious anode method is used in the modeling in order to avoid inclusion of the complex three-dimensional effects near the anode arc root and also to avoid the forced heating of all the incoming cold gas stream by the arc. A nonorthogonal boundary-conforming grid, nonstaggered variable arrangement and the all-speed SIMPLE algorithm are employed for the solution of the governing equations, including gas viscous effects, temperature-dependent properties, and compressible effects. Good agreement of the predictions with available results for a few benchmarked compressible flow problems shows that the new version of the FAST-2D program can be employed for the present plasma flow modeling. Temperature, axial velocity, Mach number, and static pressure contours, and streamlines within the DC arc plasma torch are presented to show the flow and heat transfer characteristics. The flow transits gradually from upstream subsonic regime into downstream supersonic regime with the subsonic–supersonic transition within the cylindrical segment of the torch nozzle. Additional numerical tests show that gas viscosity and Lorentz force have only a slight effect on the plasma flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号