Acetylcholinesterase (AChE) inhibition is one of the most currently available therapies for the management of Alzheimer’s disease (AD) symptoms. In this context, NMR spectroscopy binding studies were accomplished to explain the inhibition of AChE activity by Salvia sclareoides extracts. HPLC‐MS analyses of the acetone, butanol and water extracts eluted with methanol and acidified water showed that rosmarinic acid is present in all the studied samples and is a major constituent of butanol and water extracts. Moreover, luteolin 4′‐O‐glucoside, luteolin 3′,7‐di‐O‐glucoside and luteolin 7‐O‐(6′′‐O‐acetylglucoside) were identified by MS2 and MS3 data acquired during the LC‐MSn runs. Quantification of rosmarinic acid by HPLC with diode‐array detection (DAD) showed that the butanol extract is the richest one in this component (134 μg mg?1 extract). Saturation transfer difference (STD) NMR spectroscopy binding experiments of S. sclareoides crude extracts in the presence of AChE in buffer solution determined rosmarinic acid as the only explicit binder for AChE. Furthermore, the binding epitope and the AChE‐bound conformation of rosmarinic acid were further elucidated by STD and transferred NOE effect (trNOESY) experiments. As a control, NMR spectroscopy binding experiments were also carried out with pure rosmarinic acid, thus confirming the specific interaction and inhibition of this compound against AChE. The binding site of AChE for rosmarinic acid was also investigated by STD‐based competition binding experiments using Donepezil, a drug currently used to treat AD, as a reference. These competition experiments demonstrated that rosmarinic acid does not compete with Donepezil for the same binding site. A 3D model of the molecular complex has been proposed. Therefore, the combination of the NMR spectroscopy based data with molecular modelling has permitted us to detect a new binding site in AChE, which could be used for future drug development. 相似文献
The number of possible applications of NMR spectroscopy has rapidly increased during the past few years. New fields of applications have been opened by the development of supraconducting solenoids and various spin-decoupling techniques and by the method of “pulsed Fourier transform NMR-spectroscopy”. These methods originate mainly from progress in instrumentation. Recently, another “technique” has been introduced into NMR spectroscopy, which—principally on the basis of chemical and spectroscopic experience—is much less expensive but nevertheless useful. The basic principles, background, and most important applications of this method, known as the “NMR-shift-reagent technique”, form the subject of this paper. 相似文献
We report a method for the screening of interactions between proteins and selenium‐labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR‐active handle and reports on binding through 77Se NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to 13C NMR, while the NMR spectral width is ten times larger, yielding little overlap in 77Se NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium‐based bioactive compounds, such as glycomimetic drug candidates. 相似文献
The introduction of Fourier transform methods has not only remarkably enhanced the sensitivity of high-resolution NMR spectroscopy, thus allowing measurements to be made on less sensitive nuclei of the Periodic Table, but also has paved the way for the development of a large number of new experimental techniques. On the one hand, procedures already known have been improved and can now be performed more rapidly, and, on the other, completely new experimental approaches have become available. This situation resulted mainly from the introduction of programmable pulse transmitters and the separation of the experiment into preparation, evolution, and detection. In particular, the concept of two-dimensional spectroscopy has opened up new possibilities important for the analysis of complicated spectra and is able to provide information previously not accessible. As elsewhere, optimum application of the techniques and correct interpretation of the results require sound understanding of the underlying physical principles. Since a rigorous mathematical treatment is complicated and does not necessarily improve the comprehensibility, this article attempts to give an illustrative presentation of the new pulse techniques within the framework of the Bloch vector model. After a short introduction covering the basic principles, one-dimensional pulse techniques that can be applied using standard experimental equipment are dealt with. The main areas of application are signal assignment, sensitivity enhancement for measurements on less abundant nuclei, and selective excitation of individual resonances. Subsequently, the various techniques of two-dimensional NMR spectroscopy are treated: these enable shift correlations for different types of nuclei to be made, the presentation of spin multiplets without overlap, and the analysis of geometrical relations as well as of chemical exchange phenomena. 相似文献
High‐spin FeII–alkyl complexes with bis(pyridylimino)isoindolato ligands were synthesized and their paramagnetic 1H and 13C NMR spectra were analyzed comprehensively. The experimental 13C—1H coupling values are temperature (T?1)‐ as well as magnetic‐field (B2)‐dependent and deviate considerably from typical scalar 1JCH couplings constants. This deviation is attributed to residual dipolar couplings (RDCs), which arise from partial alignment of the complexes in the presence of a strong magnetic field. The analysis of the experimental RDCs allows an unambiguous assignment of all 13C NMR resonances and, additionally, a structural refinement of the conformation of the complexes in solution. Moreover the RDCs can be used for the analysis of the alignment tensor and hence the tensor of the anisotropy of the magnetic susceptibility. 相似文献
An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders‐of‐magnitude what even the highest‐field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid‐phase samples possessing spin polarizations of up to 50 %. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its “superspectrum” within a single—or at most a few—transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t1 delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded “ultrafast” methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments can, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed. 相似文献
Rotations and inversions in organic molecules are readily recognizable from the temperature dependence of the NMR spectra. The study of the effects of substituents on the activation barriers of such processes permits the elucidation of reaction mechanisms, and the stability limits of isomers can also be determined. The knowledge of the stability limits is necessary for the specific synthesis of stable rotamers and invertomers. 相似文献
Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material sciences. In such applications, however, site‐specificity and spectroscopic resolution become critical factors that are usually difficult to control by current DNP‐based approaches. We have examined in detail the effect of directly attaching mono‐ or biradicals to induce local paramagnetic relaxation effects and, at the same time, to produce sizable DNP enhancements. Using a membrane‐embedded ion channel as an example, we varied the degree of paramagnetic labeling and the location of the DNP probes. Our results show that the creation of local spin clusters can generate sizable DNP enhancements while preserving the intrinsic benefits of paramagnetic relaxation enhancement (PRE)‐based NMR approaches. DNP using chemical labeling may hence provide an attractive route to introduce molecular specificity into DNP studies in life science applications and beyond. 相似文献
Branched starch polysaccharides are capable of binding multiple hydrophobic guests, but their exploitation as multivalent hosts and in functional materials is limited by their structural complexity and diversity. Linear α(1–4)‐linked glucose oligosaccharides are known to bind hydrophobic guests inside left‐handed single helices in solution and the solid state. Here, we describe the development of an amphiphilic probe that binds to linear α(1–4)‐linked glucose oligosaccharides and undergoes a conformational switch upon complexation, which gives rise to dramatic changes in the 1H NMR spectrum of the probe. We use this probe to explore hydrophobic binding sites in the branched starch polysaccharides amylopectin and β‐limit dextrin. Diffusion‐ordered (DOSY), nuclear Overhauser effect (NOESY) and chemical shift perturbation (HSQC) NMR experiments are utilised to provide evidence that, in aqueous solution, branched polysaccharides bind hydrophobic guests in well‐defined helical binding sites, similar to those reported for complexation by linear oligosaccharides. By examining the binding affinity of the probe to systematically enzymatically degraded polysaccharides, we deduce that the binding sites for hydrophobic guests can be located on internal as well as external branches and that proximal α(1–6)‐linked branch points weaken but do not prevent complexation. 相似文献
By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105‐fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high‐resolution low‐field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real‐time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low‐field (milli‐Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen‐enhanced NMR and MRI, which are free from the limitations of high‐field magnetic resonance (including susceptibility‐induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. 相似文献
The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the 13C indirect dimension enables the distinction of similar compounds exhibiting near‐identical 1H and 13C NMR spectra. It is shown that a complete set of extremely small Δδ(1H) and Δδ(13C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned. 相似文献
Zeolites are highly important heterogeneous catalysts. Besides Brønsted SiOHAl acid sites, also framework AlFR Lewis acid sites are often found in their H‐forms. The formation of AlFR Lewis sites in zeolites is a key issue regarding their selectivity in acid‐catalyzed reactions. The local structures of AlFR Lewis sites in dehydrated zeolites and their precursors—“perturbed” AlFR atoms in hydrated zeolites—were studied by high‐resolution MAS NMR and FTIR spectroscopy and DFT/MM calculations. Perturbed framework Al atoms correspond to (SiO)3AlOH groups and are characterized by a broad 27Al NMR resonance (δi=59–62 ppm, CQ=5 MHz, and η=0.3–0.4) with a shoulder at 40 ppm in the 27Al MAS NMR spectrum. Dehydroxylation of (SiO)3AlOH occurs at mild temperatures and leads to the formation of AlFR Lewis sites tricoordinated to the zeolite framework. Al atoms of these (SiO)3Al Lewis sites exhibit an extremely broad 27Al NMR resonance (δi≈67 ppm, CQ≈20 MHz, and η≈0.1). 相似文献
As a novel approach for studying carbohydrate–lectin interactions spectroscopically, we combine the resolution and specificity of 19F‐detected NMR spectroscopy with the sensitivity of the saturation transfer difference (STD) technique. The resulting background‐free 19F‐STD spectra open a promising perspective for broad application with medical relevance, for example, in drug discovery.
An NMR spectroscopic technique has been developed to give rapid, accurate pH measurements on tenth-milliliter samples of concentrated acidic aqueous solutions buffered by fluoride ion in the pH 1.5-4.5 range. The fluoride 19F chemical shift has been calibrated as a function of pH at 0.1 and 1.0 M concentration by reference to an internal 3-fluoropyridine standard. Subsequent measurements of fluoride buffer pH required no additives and only two NMR spectra in the presence of an external reference standard. 相似文献