首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐pressure modification of MgB2C2 was synthesized and structurally characterized. The compound crystallizes in the orthorhombic space group Pnnm, with the lattice parameters a = 7.19633(3) Å, b = 4.61791(13) Å and c = 2.77714(8) Å. The compound contains heterographene B–C nets, isoelectronic to graphite, just like the ambient pressure modification. The layers are intercalated by magnesium atoms, which are arranged in a chain‐like manner. According to Density Functional Theory (DFT) calculations, the high‐pressure form of MgB2C2 is a semiconductor with a band gap of 1.02 eV. The compound does not undergo a superconducting transition down to 2 K.  相似文献   

2.
The Zintl anion (Ge2As2)2− represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2-diaminoethane (en) solution of (Ge2As2)2−, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3− is obtained as its salt [K(crypt-222)]3[Au6(Ge3As)(Ge2As2)3]⋅en⋅2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non-bonding) octahedron of six Au atoms that is face-capped by four (GexAs4−x)x (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3− unit besides three (Ge2As2)2− units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3−. Reactions of the heavier homologues (Tt2Pn2)2− (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine-vertex clusters, {[AuTt5Pn3]2}4− (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo-tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2−, according to the DFT calculations.  相似文献   

3.
The pseudo-element concept, in its most general formulation, states that isoelectronic atoms form equal numbers of bonds. Hence, clusters such as Zintl ions usually retain their structure upon isoelectronic replacement of some or all atoms. Here, a deviation from this common observation is presented, namely the formation of (Sn5Sb3)3− ( 1 ), a rare example of an eight-vertex Zintl ion, and an unprecedented example of a Zintl ion synthesized by solution means that has an arachno-type structure according to the Wade–Mingos rules. Three structure-types of interest for (Sn5Sb3)3− were identified by DFT calculations: one that matched the X-ray diffraction data, and two that that were reminiscent of fragments of known clusters. A study on the isoelectronic series of clusters, (SnxSb8−x)2−x (x=0–8), showed that the relative energies of these three isomers vary significantly with composition (independent of electron count) and that each is the global minimum at least once within the series.  相似文献   

4.
The geometries of the amines NH2X and amido anions NHX?, where X = H, CH3, NH2, OH, F, C2H, CHO, and CN have been optimized using ab initio molecular orbital calculations with a 4-31G basis set. The profiles to rotation about the N? X bonds in CH3NH?, NH2NH?, and HONH? are very similar to those for the isoprotic and isoelectronic neutral compounds CH3OH, NH2OH, and HOOH. The amines with unsaturated bonds adjacent to the nitrogen atoms undergo considerable skeletal rearrangement on deprotonation such that most of the negative charge of the anion is on the substituent. The computed order of acidity for the amines NH2X is X = CN > HCO > F ≈ C2H > OH > NH2 > CH3 > H and for the reaction NHX? + H+ → NH2X the computed energies vary over the range 373–438 kcal/mol.  相似文献   

5.
The molecular structure of 1,1-dimethylsilacyclopentene-3,4-oxide has been determined by electron diffraction in the gas phase. The experimental data are consistent withC s molecular symmetry and boat conformation with a flattened end at the silicon atom. The flap angles characterizing the orientation of C-Si-C and C-O-C planes with respect to the four coplanar carbon atoms of the ring are 16.6 ± 0.6 and 73.3 ± 0.6, respectively. Bond lengths (rg) are Si-C6, 1.866 ±0.008; Si-C2, 1.899 ± 0.008; C2-C3, 1.513 ± 0.005; C3-C4 (bridge), 1.477 ± 0.013; C-O, 1.443 ± 0.007; (C-H)mean 1.116 ± 0.003 å. Bond angles are <C5-Si-C2, 96.2 ± 0.4; <Si-C2-C3, 103.9 ± 0.3; <C2-C3-C4, 116.5 ± 0.3; <C3-C4-O, 59.2 ± 0.5; zC4-C3-H9, 109.0 ± 3.5; <C2-C3-H9, 132.9 ± 3.1; <C6-Si-C12, 114.6 ± 0.8; <Si-C6-H15, 109.7 ± 0.9.  相似文献   

6.
The cobalt(ii) chloro complex with 1-allyltetrazole (Alltz) Co(Alltz)2Cl2 was studied by the magnetic susceptibility measurements and X-ray diffraction analysis. The coordination polyhedron of the complex is a distorted octahedron formed by the N(4) atoms of two Alltz cycles and four bridging Cl atoms (coordination unit CoN2Cl4). Each chlorine atom is bound with two cobalt atoms giving rise to a crimped polymeric network. The Co(Alltz)2Cl2 complex is a weak ferromagnetic with T N = 102±1 K and spontaneous magnetization S(5 K) = 710±5 G cm3 mol–1. Hysteresis effects, depending on the intensity of the magnetic field in which the sample was cooled, were detected.  相似文献   

7.
The pseudo‐element concept, in its most general formulation, states that isoelectronic atoms form equal numbers of bonds. Hence, clusters such as Zintl ions usually retain their structure upon isoelectronic replacement of some or all atoms. Here, a deviation from this common observation is presented, namely the formation of (Sn5Sb3)3? ( 1 ), a rare example of an eight‐vertex Zintl ion, and an unprecedented example of a Zintl ion synthesized by solution means that has an arachno‐type structure according to the Wade–Mingos rules. Three structure‐types of interest for (Sn5Sb3)3? were identified by DFT calculations: one that matched the X‐ray diffraction data, and two that that were reminiscent of fragments of known clusters. A study on the isoelectronic series of clusters, (SnxSb8?x)2?x (x=0–8), showed that the relative energies of these three isomers vary significantly with composition (independent of electron count) and that each is the global minimum at least once within the series.  相似文献   

8.
The Zintl anion (Ge2As2)2? represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2‐diaminoethane (en) solution of (Ge2As2)2?, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3? is obtained as its salt [K(crypt‐222)]3[Au6(Ge3As)(Ge2As2)3]?en?2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non‐bonding) octahedron of six Au atoms that is face‐capped by four (GexAs4?x)x? (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3? unit besides three (Ge2As2)2? units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3?. Reactions of the heavier homologues (Tt2Pn2)2? (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine‐vertex clusters, {[AuTt5Pn3]2}4? (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo‐tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2?, according to the DFT calculations.  相似文献   

9.
All-electron SCF calculations in contracted large Gaussian basis sets were performed for the molecules in the isoelectronic series XeF6, IF 6 , and TeF 6 2– . Molecular equilibrium geometry of these molecules was studied first in O h symmetry. Then, the gradient minimization technique was used to determine molecular structure of the studied systems near the local minima corresponding to C 3v and C 2v geometries involved in the internal motion.In the O h symmetry, TeF 6 2– and IF 6 are bound by 172 and 104 kcal/mol, respectively. The total energy of XeF6 is larger than the sum of total energies of the constituent atoms by 192 kcal/mol. Lowering the symmetry to C 3v and C 2v results in an energy gain of about 20 kcal/mol for all studied systems.  相似文献   

10.
Summary Analytical gradients were used to optimize the polarization function exponents in the 6-31G(d) and 6-31G(d, p) basis sets for the reactants, transition structures and products in the reactions H2SO HSOH and CH3SH CH2SH2. The optimizedd exponents on the heavy atoms change by ±10% in the course of the reactions and depend on the bonding of the heavy atoms. Thep exponents on the hydrogens change by as much as a factor of 5 and depend on the element to which the hydrogen is bonded and its valency. The effect of exponent optimization on the relative energies is small (±3 kcal/mol). With the 6-31G(d, p) basis set, optimization of the polarization exponents can make some of the bonds significantly more polar, as judged by the Mulliken charges.  相似文献   

11.
The existence of a boron carbide phase with ∼25 at % carbon was proven experimentally. To evaluate the maximum possible concentration of C atoms in boron carbide (B12 − x C x )(BC2) crystals, we performed quantum-chemical calculations of (B12 − x C x )(BH2)6(CH3)6 model compounds (x = 0–4; the goal of calculations was to determine the upper limiting number of C atoms in the B12 − x C x icosahedron) by the density functional theory method (B3LYP, 6-31G** basis set, full geometry optimization). A comparison of the experimental and calculated data showed that the calculations of the model compounds reproduced the experimental dependences of the structural parameters of the icosahedron (mean bond length and volume) on the number of C atoms in it. The icosahedra were found to be stable at x ≤ 3. According to the results of the quantum-chemical calculations, the maximum carbon concentration in boron carbide was 33 at %, which corresponded to the composition B10C5 and the structural formula (B9C3)(BC2).  相似文献   

12.
Complexes of manganese(III) and manganese(V) with octaphenyltetraazaporphine (H2OPTAP) were synthesized. Acid–base interactions of these complexes in the CH2Cl2–CF3COOH system and kinetics of their dissociation in concentrated sulfuric acid, as well as kinetics of octaphenyltetraazaporphine destruction in sulfuric acid solutions were studied by spectrophotometric methods. Acid–base interactions in CH2Cl2–CF3COOH were shown to involve two macrocyclic meso-nitrogen atoms in succession. Concentration stability constants of the acid forms obtained pK 1 = 0.29 ± 0.01 and pK 2 = –0.62 ± 0.08 for (chlorine)manganese(III)octaphenyltetraazaporphine ((Cl)MnOPTAP); pK 1 = 0.99 ± 0.02 and pK 2 = – 0.70 ± 0.03 for (nitrido)manganese(V)octaphenyltetraazaporphine ((N)MnOPTAP). The rate of dissociation of the complexes in 94–98% H2SO4 does not depend on the acid concentration. The manganese(V) complex is three times as stable as the manganese(III) complex.  相似文献   

13.
The molecular structure and benzene ring distortions of ethynylbenzene have been investigated by gas-phase electron diffraction and ab initio MO calculations at the HF/6-31G* and 6-3G** levels. Least-squares refinement of a model withC 2v, symmetry, with constraints from the MO calculations, yielded the following important bond distances and angles:r g(C i -C o )=1.407±0.003 Å,r g(C o -C m )=1.397±0.003 Å,r g(C m -C p )=1.400±0.003 Å,r g(Cr i -CCH)=1.436 ±0.004 Å,r g(C=C)=1.205±0.005 Å, C o -C i -C o =119.8±0.4°. The deformation of the benzene ring of ethynylbenzene given by the MO calculations, including o-Ci-Co=119.4°, is insensitive to the basis set used and agrees with that obtained by low-temperature X-ray crystallography for the phenylethynyl fragment, C6H5-CC-, in two different crystal environments. The partial substitution structure of ethynylbenzene from microwave spectroscopy is shown to be inaccurate in the ipso region of the benzene ring.  相似文献   

14.
SCF and CI calculations were carried out on the ground1A state of HN3. The equilibrium geometry and vibration frequencies were computed. The results point to a planar structure (groupC s) but to a non-linear (170 °) N-N-N conformation. The calculated vibration frequencies are in fair agreement with experimental assignments.The dissociation path of the molecule to NH and N2 products was investigated and compared to the isoelectronic reaction of diazomethane. The dissociation energy of hydrazoic acid is estimated to be about –8 kcal/mole, with a potential barrier to dissociation of about 30 kcal/mole.Boursier IRSIA  相似文献   

15.
The IR and Raman spectra of aminomethylene propanedinitrile (AM) [H2N-CH=C(CN)2], (methylamino)methylene propanedinitrile (MAM) [CH3NH-CH=C(CN)2] and (dimethylamino)methylene propanedinitrile (DMAM) [(CH3)2N-CH=C(CN)2] as solids and solutes in various solvents have been recorded in the region 4000-50 cm–1. AM and DMAM can exist only as one conformer. From the vibrational and NMR spectra of MAM in solutions, the existence of two conformers with the methyl group orientedanti andsyn toward the double C=C bond were confirmed. The enthalpy difference H 0 between the conformers was measured to be 3.7±1.4 kJ mol–1 from the IR spectra in acetonitrile solution and 3.4±1.1 kJ mol–1 from the NMR spectra in DMSO solution. Semiempirical (AM1, PM3, MNDO, MINDO3) and ab initio SCF calculations using a DZP basis set were carried out for all three compounds. The calculations support the existence of two conformersanti andsyn for MAM, withanti being 7.8 kJ mol–1 more stable thansyn from ab initio and 8.6, 13.4, 11.6, and 10.8 kJ mor–1 from AM1, PM3, MNDO, and MINDO3 calculations, respectively. Finally, complete assignments of the vibrational spectra for all three compounds were made with the aid of normal coordinate calculations employing scaled ab initio force constants. The same scale factors were optimized on the experimental frequencies of all three compounds, and a very good agreement between calculated and experimental frequencies was achieved.  相似文献   

16.
The electronic structure of has been studied by X-ray spectroscopy. SK , SL 2,3- and CK ±-spectra were obtained. Theoretical spectra were constructed on the basis of ab initio and MNDO calculations and the experimental results were interpreted. The HOMO is an orbital in which the electron density is localized on the carbon atoms. Conclusions about the occupancy of the lowest 3d orbital were reached from the experimental results.For Communcation 1, see [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1188–1193, September, 1993.  相似文献   

17.
Gas-phase electron diffraction (ED), together with ab initio molecular orbital calculations, have been used to determine the structure and conformational composition of 1-chlorobutane, 1-bromobutane, and 1-iodobutane. These molecules may in principle exist as mixtures of five different conformers, but only three or four of these were observed in gas phase at temperatures of the ED experiments, 18C, 18C, and 23C, respectively. The observed conformational compositions (1-chlorobutane, 1-bromobutane, and 1-iodobutane) were AA (13 ± 12%, 21 ± 14%, 19 ± 17%), GA (60±13%, 33±32%, 17±31%), AG (12±16%, 8±12%, <1%), and GG (12 ±16%, 38± 34%, 64±31%). A and G denotesanti andgauche positions for the X-C1-C2-C3 (X=Cl, Br, I), and the C1-C2-C3-C4 torsion angles. The results for the most important distances (r g) and angles () from the combined ED/ab initio study for the GA conformer of 1-chlorobutane, with estimated 2 uncertainties, arer(C1-C2)=1.519(3)å,r (C2-C3)=1.530(3) å,r (C3-C4)=1.543(3) å,r (C1-Cl)=1.800(4) å, <C1C2C3=114.3(6), <C2C3C4=112.0(6), <CCCl=112.3(5). The results for the GA conformer of 1-bromobutane arer (C1-C2)=1.513(4) å,r (C2-C3)=1.526(4) å,r (C3-C4)=1.540(4) å,r(C1-Br)=1.959(8) å, <C1C2C3=115.3(11), <C2C3C4=112.8(11),<CCBr=112.1(14). The results for 1-chlorobutane and 1-bromobutane are compared with those from earlier electron diffraction investigations. The results for the GA conformer of 1-iodobutane arer (C1-C2)=1.506(5) å,r (C2-C3)=1.518(5) å,r (C3-C4)=1.535(5) å,r (C1-I)=2.133(11) å, <C1C2C3=116.8(15), <C2C3C4=115.3(15), <CCI=110.2(14). Differences in length between the different C-H bonds in each molecule, between the different C-C bonds, between the different CCH angles, and between the different CCC angles were kept constant at the values obtained from the ab initio calculations.  相似文献   

18.

Abstract  

The recently discovered ditantalaboranes Cp2Ta2B n H n+6 (n = 4, 5) are isoelectronic with the previously discovered dimetallaboranes Cp2M2B n H n+4 of the group 6 metals Cr, Mo, and W where Cp = η5-cyclopentadienyl or substituted cyclopentadienyl. Their oblatonido polyhedral structures can be derived from the oblate (flattened) deltahedra of the oblatocloso dirhenaboranes Cp2Re2B n+1H n+1 by removal of an equatorial BH vertex with adjustment of the skeletal electron count by changing the metal atoms and adding hydrogen atoms. In these oblatocloso dirhenaborane deltahedra, the approximately antipodal rhenium atoms are close enough together to form a formal Re=Re double bond with lengths in the range 2.69–2.82 ?. Similarly, short M=M distances are maintained in the related oblatonido derivatives Cp2Ta2B n H n+6 (n = 4, 5) and Cp2M2B n H n+4 (M=Cr, Mo, W). However, the synthesis of Cp2Ta2B n H n+6 (n = 4, 5) from CpTaCl4 + LiBH4/BH3 also gives a less-reduced product Cp2Ta2Cl2B5H11 with a longer Ta–Ta distance of ~3.2 ?. This may be regarded as a formal single bond bridged by one of the hydrogen atoms. Vertices of degree 5 (excluding terminal atoms/groups but not edge-bridging hydrogens) are sites of highest stability/lowest chemical reactivity not only in metal-free boranes but also in the dimetallaboranes discussed in this paper. For example, all four boron vertices in Cp2Ta2B4H10 have the favorable degree or 5.  相似文献   

19.
Durig  J. R.  Shen  Shiyu  Drew  B. R.  Zhao  W. 《Structural chemistry》2000,11(4):213-228
Variable temperature (–60 to –100°C) studies of the infrared spectra (3500–400 cm–1) of cyclopropylmethyl ketone, c-C3H5C(CH3)O, dissolved in liquid xenon have been recorded. Utilizing several doublets due to the cis and near-trans conformers, the enthalpy difference has been determined to be 269 ± 26 cm–1 (3.22 ± 0.31 kJ/mol) with the cis conformer (oxygen atom cis to the three-membered ring) the more stable rotamer. From these data it is estimated that 79 ± 3% of the cis form is present at ambient temperature. Ab initio calculations have been carried out with different basis sets up to 6-311+G(2df,2pd) at the restricted Hartree–Fock and/or with full electron correlation by the perturbation method to second order (MP2) from which structural parameters and conformation stabilities have been determined. These calculations support the experimental conformational conclusions that the cis form is the more stable conformer. A complete vibrational assignment is given for the cis conformer, which is supported from a normal coordinate calculation utilizing ab initio force constants. Several of the fundamentals of the near-trans conformer have been identified and assigned. Adjusted r 0 structural parameters have been obtained from combined ab initio predicted values and previously reported rotational constants from the microwave investigation. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.  相似文献   

20.
Highly accurate upper bounds for several 2Pe states of the Li isoelectronic series obtained by extensive Hylleraas-Cl calculations are given. The best value for the 22Pe state (1s2p2) of Li is −5.21373920 au. The evaluation of the occurring integrals is given explicitly. Additionally, we present some expectation values and isotope energies of the Li isoelectronic series. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号