首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用溶胶-凝胶技术在毛细管中原位合成硅胶整体柱,通过表面化学修饰技术制备了极性的丙基脲硅胶整体柱.对所制备的整体柱柱性能进行了评价,考察了极性物质在该整体柱上的保留行为,并对其可能的保留机理进行了探讨.研究表明,该柱在亲水作用电色谱模式下能有效分离苯酚类极性小分子化合物.  相似文献   

2.
张静  王玲玲  单联国  卫引茂 《色谱》2012,30(8):804-809
用硅胶与氨丙基三甲氧基硅烷反应,再与δ-葡萄糖酸内酯反应,制备了一种多羟基化合物键合的新型亲水色谱固定相。以水-有机溶剂(乙醇、乙腈、四氢呋喃)为流动相,通过改变流动相中有机溶剂的种类及浓度、缓冲盐浓度和柱温,考察了该固定相对6种强极性中药组分的保留行为和保留机理。当水的比例在0~40%(v/v)范围时,溶质的保留随着流动相中水的比例的增大而减小,属于典型的亲水色谱分离模式;而当流动相中水的比例在0~100%(v/v)范围内变化时,溶质的保留随着水的比例变化呈“U”形曲线,属于亲水色谱和反相色谱的混合保留机理。缓冲盐的浓度和pH效应说明,所选用的中药组分与所制备的固定相间还存在弱的静电作用。该固定相对6种中药组分以及丹参注射液具有良好的分离性能,表明其在强极性中药有效成分的分离及其他强极性物质的分离分析中具有一定的应用前景。  相似文献   

3.
以多孔硅胶为载体,通过聚合反应将N-异丙基丙烯酰胺和甲基丙烯酸缩水甘油醚接枝于硅胶表面,并在聚合物链中植入γ-环糊精.用1H核磁共振、元素分析、红外光谱对其结构进行表征,并将此材料用作液相色谱固定相,通过考察在高亲水有机流动相中极性亲水化合物的保留,发现此固定相具有亲水色谱(HILIC)的特征,可以用于核苷类亲水化合物的分离.此外,还可以用于富勒烯碳60(C60)和碳70(C70)的分离,相比于C60,此固定相对C70有更强的保留,表明此固定相表面γ-环糊精对C70具有立体选择性.并且,此固定相具有一定的温敏特性,仅通过改变柱温就可以达到分离的目的.  相似文献   

4.
成晓东  张铮 《应用化学》2019,36(6):726-732
利用异氰酸丙基三乙氧基硅烷与L-异亮氨酸反应合成了一种新型的硅烷偶联剂,并进一步将其与硅胶反应制得键合有L-异亮氨酸的亲水色谱固定相。 通过核磁共振氢谱表明亮氨酸功能化硅烷偶联剂的成功合成、元素分析表征证明亮氨酸已成功键合到硅胶表面。 将其作为亲水模式下的固定相填料填装在150 mm×4.6 mm不锈钢色谱柱中,以一系列经典的极性小分子作为探针,考察了这些探针分子在固定相上的色谱行为。 极性化合物的保留时间随着流动相中有机溶剂含量提高而逐渐增大,表现出典型的亲水保留特征。 进一步研究了流动相中乙腈含量、缓冲盐pH值及缓冲盐浓度等因素对分析物在固定相上的保留的影响。 在优化了相关参数后,将固定相应用于碱性化合物、水溶性维生素以及核苷类极性物质的分离当中。 在等度洗脱下,5种碱性化合物、6种水溶性维生素和8种核苷类物质分别在8、18及25 min内被成功分离。 分离结果表明了合成的L-异亮氨酸键合亲水色谱固定相具有较好的色谱性能,在极性化合物的分离上具有良好的应用前景。  相似文献   

5.
利用溶胶-凝胶(Sol-Gel)技术制备了混合烷基开管毛细管电色谱柱(C8-C13OT-CEC),并考察了其电渗流行为和电色谱性能。研究了流动相中甲醇含量对芳香族中性化合物保留的影响。发现C8-C18OT-CEC柱体现反相分配机理。5种芳香族化合物和4种苯同系物在C8-C13OT-CEC柱上分离良好,同时还考察了分离电压和柱内径对柱效的影响,结果表明高的电压和较小的柱内径能提高柱效。  相似文献   

6.
李新燕  王彦  谷雪  陈妍  阎超 《色谱》2010,28(3):231-235
以甲基丙烯酸丁酯(BMA)和3-[N,N-二甲基-[2-(2-甲基丙-2-烯酰氧基)乙基]铵]丙烷-1-磺酸内盐(SPE)为单体,制备了新型的亲水作用毛细管整体柱,并通过三聚氰胺在此柱上的保留行为证明其具有亲水性。以加压毛细管电色谱(pCEC)技术为平台,优化了整体柱基于亲水作用分离分析奶制品中三聚氰胺的色谱条件。当流动相中乙腈与10 mmol/L磷酸盐缓冲液的体积比为80:20, pH为3.0,电压为3 kV,检测波长为215 nm时,三聚氰胺能获得很好的分离。方法学考察结果表明,合成的亲水整体柱具有良好的重现性和渗透性,建立的pCEC分析方法的检出限为0.05 mg/L。该方法简单方便,回收率较高,而且流动相中无需添加离子对试剂,适合于奶制品中三聚氰胺的定量测定。  相似文献   

7.
以大黄酸为原料,γ-氨丙基三乙氧基硅烷(KH-550)为偶联剂,简便制备了一种新型羧基键合硅胶固定相(RBSP),并用红外光谱、热重分析及元素分析对其结构进行表征.考察了流动相中甲醇含量对键合固定相色谱性能的影响,并以含酸性、中性和碱性化合物的混合物为溶质,评价了RBSP的色谱性能.以甲醇-水为流动相,用C18柱作参比,研究了该键合硅胶作为HPLC固定相对两种大豆异黄酮化合物和几种生物碱基的分离,并对其色谱分离机理进行了初步探讨.实验结果表明,该固定相(RBSP)具有较好的反相色谱性能,同时由于键合相中含有酚羟基及酰胺基团,能为多种溶质提供作用位点,对极性化合物的分离具有明显优势,且分离速度快,可有效用于极性化合物的分离分析.  相似文献   

8.
姜舸  沈爱金  郭志谋  李秀玲  梁鑫淼 《色谱》2015,33(9):929-933
糖类化合物因其极性强,在反相色谱模式下保留较弱,因此常用亲水作用色谱(HILIC)对其进行分离分析。本文以9种糖类化合物的混合物为研究对象,系统评价了其在Click TE-Cys亲水色谱柱上的保留行为,分别考察了流动相中有机相比例和盐浓度对其保留行为的影响。实验证明:9种糖类化合物按极性由小到大的顺序依次从Click TE-Cys色谱柱上被洗脱下来。随着有机相比例的增加,糖类化合物的保留增强;随着盐浓度的增加,除唾液酸外的糖类化合物的保留增强。用顶替-吸附液相相互作用模型模拟了糖类化合物在HILIC上的保留行为,采用保留方程ln k=a+blnCB+cCB描述HILIC的保留规律,对HILIC的保留值进行多元线性回归。结果表明糖类化合物在Click TE-Cys色谱柱上的保留行为符合HILIC的保留规律。  相似文献   

9.
采用亲水作用色谱模式,以二醇基硅胶为固定相,水-有机溶剂为流动相,通过改变流动相中有机溶剂种类及浓度、缓冲盐、有机酸种类及其浓度、柱温等条件,研究了强极性中药组分在亲水作用色谱中的保留行为。结果表明:流动相中水的比例在0~100%(V/V)变化时,溶质保留呈U型曲线,属于亲水色谱和反相色谱的混合保留机理。水含量在0~50%(V/V)范围时,亲水作用控制溶质的保留。溶质保留随流动相中缓冲盐浓度的增大而增强。对于酸性溶质,其保留随有机酸三氟乙酸、甲酸、乙酸的酸性降低而增大。  相似文献   

10.
以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization, SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA).通过改变SI-ATRP反应体系中单体的浓度,制备了3种不同接枝量的亲水作用色谱固定相.考察了Silica-CBMA固定相对有机酸类化合物的分离性能以及流动相中pH值、盐浓度、水含量等因素对溶质保留行为的影响.结果表明,在亲水作用色谱模式下,Silica-CBMA固定相对有机酸类化合物的分离是离子交换作用与亲水作用的混合色谱模式.流动相中盐浓度增大,溶质保留减弱,符合离子交换作用特征;固定相和溶质的离子化程度受流动相pH值影响较大,pH值增大,溶质保留增强;而溶质的保留时间随流动相水含量增加而降低则是典型的亲水作用色谱特征.使用自制Silica-CBMA柱,建立了芦丁片中维生素C、芦丁含量的亲水作用色谱测定方法,操作方法简单,为强极性样品的分离测定提供了新方法.  相似文献   

11.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

12.
A novel cationic hydrophilic interaction monolithic stationary phase based on the chemical modification of carboxymethyl chitosan (CMCH) to the monolithic silica skeleton using carbodiimide as an activation reagent was prepared for performing capillary liquid chromatography. The amino and hydroxy moieties of CMCH functioned as both the ion-exchange sites and polar providers. The performance of the column was studied by the separation of polar acidic compounds. The chitosan functionalized monolithic silica column showed good selectivity for nucleosides, nucleotides, aromatic acids and aliphatic acids. The mechanism for the separation of these compounds was also studied. The results showed that these compounds were separated primarily based on the hydrophilic interaction mechanism.  相似文献   

13.
Huang G  Lian Q  Zeng W  Xie Z 《Electrophoresis》2008,29(18):3896-3904
A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.  相似文献   

14.
Wang J  Lü H  Lin X  Xie Z 《Electrophoresis》2008,29(4):928-935
A monolithic capillary column with double mixed-modes of hydrophilic interaction/cation-exchange and RP/cation-exchange stationary phase was prepared by in situ thermal polymerization and then hydrolyzed with hydrochloric acid. The polymerization solution containing glycidyl methacrylate (GMA), 3-sulfopropyl methacrylate potassium salt (SPMA), and ethylene dimethacrylate (EDMA) in a binary porogenic solvent consisting of dimethylformamide (DMF) and 1,4-butanediol was polymerized in a fused-silica capillary pretreated with 3-(trimetoxysilyl) propyl methacrylate. The epoxy groups on the surface were hydrolyzed to diol groups with hydrochloric acid to enhance the polarity of the stationary phase. By simply altering the ACN content in the mobile phase, two mixed-mode mechanisms could be achieved on the same monolithic column in different mobile phase condition. Hydrophilic interaction (or hydrophilic interaction/cation-exchange) was observed at high ACN content, as well as RP (or RP/cation-exchange) was observed at low ACN content. The monolithic column provided good selectivity and high efficiency for separation of neutral polar analytes and basic compounds. Phenols, anilines, alkaloids, nucleic acid bases, and narcotic pharmaceuticals have been successfully separated. Effects of salt concentration and ACN content on the separation have also been investigated. High column efficiencies of up to 352 000 plates/meter were obtained by the separation of narcotic pharmaceuticals.  相似文献   

15.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

16.
A novel silica-based monolithic column possessing diethylenetriaminopropyl ligands for hydrophilic interaction pressurized capillary electrochromatography is described. The preparation of monolithic stationary phase was based on the individual silica matrix forming and subsequent chemical bonding. The triamino groups on the surface of the novel stationary phase generated a sustainable anodic electroosmotic flow under acidic conditions. A variety of neutral and basic analytes were used to evaluate the column performance. The monolithic silica stationary phase exhibited hydrophilic interaction chromatographic behavior toward neutral solutes. For basic tetracycline antibiotics, hydrophilic interaction as well as electrophoretic migration process with the monoliths was observed and peak tailing was avoided.  相似文献   

17.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

18.
Ye F  Xie Z  Wong KY 《Electrophoresis》2006,27(17):3373-3380
A silica-based monolithic column as polar stationary phase is proposed for pressurized CEC (pCEC). The monolithic silica matrix from a sol-gel process was chemically modified by 3-aminopropyltrimethoxysilane to produce a column for hydrophilic interaction applications. The amino groups on the surface of the polar stationary phase generated anodic EOF under acidic conditions and served at the same time as a weak anion-exchanger. The anion solutes such as nucleotides were separated by the mixed mode mechanism, which comprised hydrophilic interaction, weak anion-exchange, and electrophoresis. The influences of buffer concentration and organic modifier content on the separation of nucleotides by pCEC have been investigated. In addition, the monolithic silica columns were also able to separate various polar compounds such as phenols, nucleic acid bases, and nucleosides in the hydrophilic interaction CEC mode.  相似文献   

19.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   

20.
Lin J  Liu S  Lin J  Lin X  Xie Z 《Journal of chromatography. A》2011,1218(29):4671-4677
A novel highly hydrophilic polymethacrylate-based monolithic stationary phase based on the copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and pentaerythritol triacrylate (PETA) was designed for pressurized capillary electrochromatography. A typical hydrophilic interaction chromatography mechanism could be observed when the content of acetonitrile (ACN) in the mobile phase exceeded 25%. Slight swelling or shrinking with mobile phases of different polarity was observed in permeability studies. Good retentions and efficient separations of polar analytes, such as neutral amides and phenols, were well achieved in hydrophilic interaction chromatography mode with only about 50% ACN content in the mobile phase. It was remarkably lower than the content of ACN (>90%) used on the hydrophilic polymethacrylate-based monoliths reported previously. Additionally, a mixed mode of hydrophilic interaction (HI) and strong cation-exchange (SCX) could be also obtained in the analysis of charged peptides, and high column efficiency up to 80,000 plates/m was achieved without peak tailing. The prepared hydrophilic stationary phase might provide a potential environmental friendly separation media for polar solutes as it consumes a low volume of organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号