首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 eV, and 32.5 eV. A comparison of experimental and theoretical RFPADs allows us to identify the ionic states detected in the experimental studies. In addition to previously identified states, we found evidence for the 2 (2)Δ state with an ionization potential of 25.3 eV and (2)Σ(+) states with ionization potentials near 32.5 eV. A comparison of the experimental and theoretical RFPADs permits us to estimate predissociative lifetimes of 0.25-1 ps for some of the ion states. Consideration of the MFPADs of a series of (2)Π ion states indicates the importance of inter-channel coupling at low photoelectron kinetic energy and the limitations of a single-channel analysis based on the corresponding Dyson orbitals.  相似文献   

2.
Dissociative direct photoionization of the N2O(X 1Sigma+) linear molecule via the N2O+(B 2Pi) ionic state induced by linearly polarized synchrotron radiation P in the 18-22 eV photon energy range is investigated using the (VA+,Ve,P) vector correlation method, where VA+ is the nascent velocity vector of the NO+, N2+, or O+ ionic fragment and Ve that of the photoelectron. The DPI processes are identified by the ion-electron kinetic energy correlation, and the IchiA+(thetae,phie) molecular frame photoelectron angular distributions (MFPADs) are reported for the dominant reaction leading to NO+ (X 1Sigma+,v) + N(2D)+ e. The measured MFPADs are found in satisfactory agreement with the reported multichannel Schwinger configuration interaction calculations, when bending of the N2O+(B 2Pi) molecular ion prior to dissociation is taken into account. A significant evolution of the electron scattering anisotropies is observed, in particular in the azimuthal dependence of the MFPADs, characteristic of a photoionization transition between a neutral state of Sigma symmetry and an ionic state of Pi symmetry. This interpretation is supported by a simple model describing the photoionization transition by the coherent superposition of two ssigma and ddelta partial waves and the associated Coulomb phases.  相似文献   

3.
The delayed autoionization of H2 doubly excited states into channels of different inversion symmetry gerade and ungerade is investigated by using pulses of attosecond duration (isolated or packed in trains), linearly polarized along the molecular axis. It has been shown in previous work, by using XUV laser pulses with durations of 4 fs or longer, that the molecular frame photoelectron angular distributions (MFPAD) associated with the dissociative channel H+ + H(n?) are not symmetric with respect to the inversion center of the molecule. In contrast, the MFPADs become symmetric for shorter fs pulses. Here we show that, although this is still the case for pulses of attosecond duration, the combination of two of these pulses with a controlled time delay may still lead to asymmetric MFPADs. From the analysis of the time evolution of the calculated MFPADs, we propose a way to elucidate autoionization lifetimes of molecular resonant states. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2462–2471, 2010  相似文献   

4.
Photoelectron angular distribution (PAD) in the laboratory frame for randomly oriented molecules is typically described by a single anisotropy parameter, the so-called asymmetry parameter. However, especially from a theoretical perspective, it is more natural to consider molecular photoionization by using a molecular frame. The molecular frame PADs (MFPADs) may be used to extract information about the electronic structure of the system studied. In the last decade, significant experimental efforts have been directed to MFPAD measurements. MFPADs are highly characterizing signatures of the final ionic states. In particular, they are very sensitive to the nature of the final state, which is embodied in the corresponding Dyson orbital. In our previous work on acetylacetone, a prototype system for studying intra-molecular hydrogen bond interactions, we followed the dynamics of the excited states involved in the photoexcitation–deexcitation process of this molecule. It remains to be explored the possibility of discriminating between different excited states through the MFPAD profiles. The calculation of MFPADs to differentiate excited states can pave the way to the possibility of a clear discrimination for all the cases where the recognition of excited states is otherwise intricate.  相似文献   

5.
Recoil frame photoelectron angular distributions (RFPADs) of BF(3) molecules are presented over the energy region of the shape resonance in the F 1s continuum. Time-dependent density functional theory calculations are also given to understand the shape resonance dynamics. The RFPADs have been compared with the theoretical calculations. It is found that the RFPADs calculated by the localized core-hole model are in better agreement with the experimental, compared with those by the delocalized core hole. Dipole matrix elements and dipole prepared continuum wavefunctions show that the shape resonance in the F 1s ionization continuum of BF(3) is induced by p-partial waves as previously reported by Swanson et al. [J. Chem. Phys. 75, 619 (1981)]. However, due to the couplings with the other partial waves the feature characteristic of the p-partial waves has not been observed in the RFPADs.  相似文献   

6.
Molecular frame photoemission is a very sensitive probe of the photoionization (PI) dynamics of molecules. This paper reports a comparative study of non-resonant and resonant photoionization of D2 induced by VUV circularly polarized synchrotron radiation at SOLEIL at the level of the molecular frame photoelectron angular distributions (MFPADs). We use the vector correlation method which combines imaging and time-of-flight resolved electron-ion coincidence techniques, and a generalized formalism for the expression of the Ⅰ(χ, θe, Фe) MFPADs, where χ is the orientation of the molecular axis with respect to the light quantization axis and (θe, Фe) the electron emission direction in the molecular frame. Selected MFPADs for a molecule aligned parallel or perpendicular to linearly polarized light, or perpendicular to the propagation axis of circularly polarized light, are presented for dissociative photoionization (DPI) of D2 at two photon excitation energies, hv=19 eV, where direct PI is the only channel opened, and hv=32.5 eV, i.e. in the region involving resonant excitation of Q1 and Q2 doubly excited state series. We discuss in particular the properties of the circular dichroism characterizing photoemission in the molecular frame for direct and resonant PI. In the latter case, a remarkable behavior is observed which may be attributed to the interference occurring between undistinguishable autoionization decay channels.  相似文献   

7.
We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 degrees to the orientation direction of the OCS molecules. The CO(nu=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO(nu=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting beta parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.  相似文献   

8.
Ultraviolet photodissociation of SH (X 2Pi, upsilon"=2-7) and SD (X 2Pi, upsilon"=3-7) has been studied at 288 and 291 nm, using the velocity map imaging technique to probe the angular and speed distributions of the S(1D2) products. Photodissociation cross sections for the A 2Sigma+<--X 2Pi(upsilon") and 2Delta<--X 2Pi(upsilon") transitions have been obtained by ab initio calculations at the CASSCF-MRSDCI/aug-cc-pV5Z level of theory. Both the experimental and theoretical results show that SH/SD photodissociation from X 2Pi (upsilon"相似文献   

9.
Two-body Coulomb explosion with the C-O bond breaking of methanol induced by intense laser pulses with the duration of Delta t=7 and 21 fs is investigated by the coincidence momentum imaging method. When Delta t=7 fs, the angular distribution of recoil vectors of the fragment ions for the direct C-O bond breaking pathway, CH(3)OH(2+)-->CH(3) (+)+OH(+), exhibits a peak deflected from the laser polarization direction by 30 degrees -45 degrees , and the corresponding angular distribution for the migration pathway, CH(2)OH(2) (+)-->CH(2) (+)+H(2)O(+), in which one hydrogen migrates from the carbon site to the oxygen site prior to the C-O bond breaking, exhibits almost the same profile. When the laser pulse duration is stretched to Delta t=21 fs, the angular distributions for the direct and migration pathways exhibit a broad peak along the laser polarization direction probably due to the dynamical alignment and/or the change in the double ionization mechanism; that is, from the nonsequential double ionization to the sequential double ionization. However, the extent of the anisotropy in the migration pathway is smaller than that in the direct pathway, exhibiting a substantial effect of hydrogen atom migration in the dissociative ionization of methanol interacting with the linearly polarized intense laser field.  相似文献   

10.
We report an imaging study of nitric acid (HNO(3)) photodissociation near 204 nm with detection of O((1)D), one of the major decomposition products in this region. The images show structure reflecting the vibrational distribution of the HONO coproduct and significant angular anisotropy that varies with recoil speed. The images also show substantial alignment of the O((1)D) orbital, which is analyzed using an approximate treatment that reveals that the polarization is dominated by incoherent, high order contributions. The results offer additional insight into the dynamics of the dissociation of nitric acid through the S(3) (2 (1)A(')) excited state, resolving an inconsistency in previously reported angular distributions, and pointing the way to future studies of the angular momentum polarization.  相似文献   

11.
Downie P  Powis I 《Faraday discussions》2000,(115):103-17; discussion 175-204
Electron-ion recoil vector correlations are examined for the ionization and subsequent dissociation of A state CF3I+. The magnitude of the electron and fragment ion recoil vectors permits the energetics of two alternative decays to I+ and CF3+ to be compared, while differences between the angular correlations are interpreted as molecule-frame photoelectron angular distributions which, in the I+ channel, are smeared by molecular rotation between ionization and dissociation. Quantitative estimates of sub-ps I+ decay lifetimes are extracted, indicating very different decay rates for the alternative dissociation channels. Surprisingly, the ka1 and ke photoelectron continua exchange polarization dependence in the I+ channel correlations and vibronic interactions are postulated in explanation. This can also rationalize the non-adiabatic A CF3I+-->I+ decay mechanism and the branching competition between the CF3+ and I+ channels.  相似文献   

12.
Cross-section data for electron impact induced ionization of bio-molecules are important for modelling the deposition of energy within a biological medium and for gaining knowledge of electron driven processes at the molecular level. Triply differential cross sections have been measured for the electron impact ionization of the outer valence 7b(2) and 10a(1) orbitals of pyrimidine, using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and ejected electron energy of 20 eV, for scattered electron angles of -5°, -10°, and -15°. The ejected electron angular range encompasses both the binary and recoil peaks in the triple differential cross section. Corresponding theoretical calculations have been performed using the molecular 3-body distorted wave model and are in reasonably good agreement with the present experiment.  相似文献   

13.
Slice imaging experiments are reported for the quantum state-to-state photodissociation dynamics of OCS. Both one-laser and two-laser experiments are presented detecting CO(J) or S((1)D(2)) photofragments from the dissociation of hexapole state-selected OCS(v(2) = 0,1,2 / J = 1,2) molecules. We present data using our recently developed large frame CCD centroiding detector and have implemented a new high speed MCP high voltage pulser with an effective slice width of only 6 ns. Slice images are presented for quantum state-to-state photolysis, near 230 nm, of vibrationally excited OCS(v(2) = 0,1,2). Two-laser pump-probe experiments detecting CO(J = 63 or 64) show a dramatic change in the beta parameter for the same final state of CO(J) when the photolysis energy is reduced by about 1000 cm(-1). We attribute the observed change from large positive to large negative beta to a large increase of the molecular frame deflection angle at very slow recoil velocity, due to a breakdown of the axial recoil. Two-laser experiments on the S((1)D(2)) fragment reveal single well-separated rings in the slice images correlating with individual CO(J) states. Strong polarization effects of the probe laser are observed, both in the angular distribution of the intensity of single S((1)D(2)) rings and in the resolution of the radial velocity distribution. It is shown how the broadening of the velocity distribution can be reduced by a directed ejection of the electron in the ionization process perpendicular to the slice imaging plane. The dissociation energy of OCS(v(2) = 0, J = 0) --> CO(J = 0) + S((1)D(2)) is determined with high accuracy D(0) = (34 608 +/- 24) cm(-1).  相似文献   

14.
We have performed extensive density functional theory (DFT) calculations, partial cross sections, dipole prepared continuum orbitals, dipole amplitudes and phase shifts, asymmetry parameters β, and molecular frame photoelectron angular distributions, to elucidate the O1s photoionization dynamics of NO(2) molecule with emphasis on the shape resonances in the O1s ionization continuum. In the shape resonance region, the β parameters and photoelectron angular distributions have been compared with our experimental results. Fairly good agreement between the theory and experiment has confirmed that the DFT level calculations can well describe the photoionization dynamics of the simple molecule such as NO(2). Interference due to equivalent atom photoionization is theoretically considered, and the possibility of detection of the effect in the two degenerate channels with different combinations of light polarization and photoemission direction is discussed.  相似文献   

15.
The translational anisotropy and the polarization of the electronic angular momentum of the O ((1)D2) fragment produced from the 298 nm photodissociation of ozone have been determined using resonance enhanced multiphoton ionization (REMPI) in conjunction with time-of-flight mass spectrometry (TOFMS). The translational anisotropy parameter beta, which is necessarily averaged over the O2 co-fragment rotational distribution, is measured to be 1.08 +/- 0.04. This is consistent with that expected for the (1)B2 <-- (1)A1 transition within an impulsive model if the tangential velocity associated with the zero point motion of the bend is constricted to opening the bond angle. Molecular frame polarization parameters of rank up to k = 4 have been extracted for the O ((1)D2) fragment and the calculated m(J) populations show a strong preference for the absolute value(m(J)) = 1 states. A small coherence term is also observed, a manifestation of the nuclear geometry of the dissociating molecule and the existence of possible non-adiabatic processes in the exit channel. The orientation associated with the mapping of the photon helicity onto the O ((1)D2) electronic angular momentum distribution was observed to have been quenched. However, the parameter gamma1', which describes the contribution to the orientation from a coherent superposition of a parallel and perpendicular excitation where the photofragment angular momentum lies perpendicular to both the recoil velocity and to the transition dipole moment, was determined to be -0.06.  相似文献   

16.
A combination of velocity map imaging and slicing techniques have been used to measure the product recoil anisotropy and angular momentum polarization for the photodissociation process I2-->I(2P(3/2))+I(2P(3/2)) and I2-->I(2P(3/2)))+I(2P(1/2)) in the 450-510 nm laser wavelength region using linearly polarized photolysis and probe laser light. The former channel is produced predominantly via perpendicular excitation to the 1Piu state, and the latter is predominantly parallel, via the B 3Pi(0u)+ state. In both cases we observe mostly adiabatic dissociation, which produces electronically aligned iodine atoms in the mid /m/=1/2 states with respect to the recoil direction.  相似文献   

17.
Kr(+) and Xe(+) formation following photodissociation of NO-RG (RG = Kr or Xe) molecules via the ?-X electronic transition in the 44,150-44,350 cm(-1) region has been investigated using velocity map imaging. Nuclear kinetic energy release (nKER) spectra indicate that the NO cofragment is produced in multiple vibrational states of the electronic ground state, with a high degree of rotational excitation. Photofragment angular distributions and nKERs are consistent with photo-induced charge transfer at the two-photon level followed by dissociative ionization at the three-photon level. RG(+) angular distributions showing highly parallel character relative to the laser polarization axis are indicative of a high degree of molecular alignment in the dissociating species.  相似文献   

18.
A study of excited states of the NO dimer is carried out at 7.1-8.2 eV excitation energies. Photoexcitation is achieved by two-photon absorption at 300-345 nm followed by (NO)(2) dissociation and detection of electronically excited products, mostly in n=3 Rydberg states of NO. Photoelectron imaging is used as a tool to identify product electronic states by using non-state-selective ionization. Photofragment ion imaging is used to characterize product translational energy and angular distributions. Evidence for production of NO(A (2)Sigma(+)), NO(C (2)Pi), and NO(D (2)Sigma(+)) Rydberg states of NO, as well as the valence NO(B (2)Pi) state, is obtained. On the basis of product translational energy and angular distributions, it is possible to characterize the excited state(s) accessed in this region, which must possess a significant Rydberg character.  相似文献   

19.
We report extended measurements of the rotational polarization and correlated angular distribution of CN photofragments from ICN photodissociation, with a particular emphasis on the creation and detection of molecular orientation with circularly-polarized light. Doppler profiles of the nascent photoproducts are measured by Frequency-Modulated (FM) transient absorption, and the resulting high signal-to-noise data are valuable for verifying the form of the angular correlations between the recoil velocity, the photofragment rotational angular momentum, and the space-fixed frame defined by the dissociation polarization. A space-fixed bipolar moment notation can be used for an unambiguous characterization of the maximal set of polarization properties that can be created with one-photon excitation and detected with one-photon Doppler-resolved absorption spectroscopy. Relating the observed polarization moments to the various coherent and incoherent, adiabatic and non-adiabatic mechanisms, that have been derived and verified extensively in the case of diatomic photodissociation to polarized atomic fragments, is not unambiguous in the case of diatomic fragments from triatomic precursors. Constraints among various polarization moments confirmed in the case of diatomic dissociation are not confirmed in this triatomic case, where the perpendicular transitions to non-degenerate A' and A' components of a linear Omega = 1 state are qualitatively different from excitation to degenerate Omega = +/-1 states in a diatomic molecule.  相似文献   

20.
Eland JH  Takahashi M  Hikosaka Y 《Faraday discussions》2000,(115):119-26; discussion 175-204
A new technique, based on velocity imaging, has been developed to examine correlations in energy and angle between the several particles formed in dissociative single and double photoionisation at VUV wavelengths. Electrons and positive fragment ions are imaged in coincidence at position-sensitive detectors; the resulting multidimensional data sets contain separable energy distributions, angular distributions and correlations in energy and angle between the particles. In some cases internal or external evidence indicates that pure axial recoil occurs, without molecular rotation. In such cases fixed-molecule photoelectron angular distributions can be extracted and parametrised. Results for H2, N2, NO, CO and O2 are presented. Effects of shape resonances in the ionisation channels are apparent in several cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号