首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new 2,2'-bipyridine and 1,10-phenanthroline complexes, namely [Mn(phenca)(2)]·(H(2)O)(2) (1), [Cu(4)(phen)(4)(OH-)(4)(H(2)O)(2)](DMF)(4)(ClO(4)-)(4)(H(2)O) (2), [Cu(2)(2,2-bipy)(2)(C(2)O(4)2-)(H(2)O)(2)(NO(3))(2)] (3) and [Cu(2,2-bipy)(2)(ClO(4)-)](ClO(4)-) (4) (2,2'-bpy = 2,2'-bipyridine, Hphenca = 1,10-phenanthroline-2-carboxylic acid) have been synthesized by a hydrothermal reaction. The products were characterized by elemental analysis, infrared spectroscopy and X-ray crystal diffraction. While strong hydrogen bonds play central roles in the formation of the 3D structure, the combined influence of the weak interactions such as π···π interactions is also evident in the structures. A preliminary investigation on the ion exchange properties of the complexes is presented.  相似文献   

2.
A Cu(II)-ACC complex [(Bpy)Cu(ACC)(H2O)]ClO4 (1) was prepared and its treatment with hydrogen peroxide gave rise to ethylene production in an ACC-Oxidase like activity. A brown species that could be a key intermediate in the reaction was detected at low temperature.  相似文献   

3.
In the presence of ammonia, the reactions of cyanamide and Cu(II) ions with different organic blocking ligands afford three hydrogencyanamido bridged dinuclear complexes: [(dmbpy)(4)Cu(2)(HNCN)](ClO(4))(3)·H(2)O (1, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [(phen)(4)Cu(2)(HNCN)](ClO(4))(3)·2H(2)O (2, phen = 1,10-phenanthroline) and [(bpy)(2)Cu(2)(HNCN)(2)(ClO(4))(2)] (3, bpy = 2,2'-bipyridine), respectively. However, using the di(2-pyridyl)ketone (dpk) ligand in similar experimental conditions, an interesting reaction between the hydrogencyanamido anion and dpk is observed. Using Cu(ClO(4))·6H(2)O or Co(ClO(4))·6H(2)O as the metal source, it gives the mixed bridged hexanuclear complex [(dpk·OMe)(4)(dpk·NCN)(2)Cu(6)(H(2)O)(2)](ClO(4))(4) (4), or the mononuclear complex [(dpk·OMe)(dpk·HNCN)Co](ClO(4))·2H(2)O (5), respectively. Their structures are characterized by single crystal X-ray diffraction analyses. Magnetic measurements reveal moderate antiferromagnetic interaction between the Cu(II) ions in complex 1, weak ferromagnetic coupling in complex 2, and strong antiferromagnetic interactions for complexes 3 and 4. The magnetostructural correlations of these complexes are discussed.  相似文献   

4.
Two new mixed ligand copper(II) complexes with diethylenetriamine, 2,2'-bipyridine and 1,10-phenanthroline have been synthesized. The crystal and molecular structures of [Cu(dien)(phen)](ClO(4))(2) and [Cu(dien)(bipy)](BF(4))(2) (dien=diethylenetriamine, phen=1,10-phenanthroline, bipy=2,2'-bipyridine) were determined by X-ray crystallography from single crystal data. These two complexes have similar structures. The EPR spectral data also suggest that these complexes have distorted square pyramidal geometry about copper(II). Anti-microbial and superoxide dismutase activities of these complexes have also been measured. They show the higher SOD activity than the corresponding simple Cu(II)-dien/Cu(II)-PMDT (PMDT=N,N,N',N',N'-pentamethyldiethylenetriamine) complexes because of a strong axial bond of one of the nitrogen atoms of the alpha-diimine. Both the complexes have been found to cleave plasmid DNA in the presence of co-reductants such as ascorbic acid and glutathione.  相似文献   

5.
The reaction of cyclohexylphosphonic acid (C(6)H(11)PO(3)H(2)), anhydrous CuCl(2) and 2,2'-bipyridine (bpy) in the presence of triethylamine followed by a metathesis reaction with KNO(3) afforded [Cu(4)(mu-Cl)(2)(mu(3)-C(6)H(11)PO(3))(2)(bpy)(4)](NO(3))(2) (1). In an analogous reaction involving Cu(OAc)(2).H(2)O, the complex [Cu(4)(mu-CH(3)COO)(2)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4)](CH(3)COO)(2) (2) has been isolated. The three-component reaction involving Cu(NO(3))(2).3H(2)O, cyclohexylphosphonic acid and 2,2'-bipyridine in the presence of triethylamine afforded the tetranuclear assembly [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4) (H(2)O)(2)](NO(3))(3) (3). Replacing 2,2'-bipyridine with 1,10-phenanthroline (phen) in the above reaction resulted in [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(phen)(4)(H(2)O)(2)](NO(3))(3) (4). In all the copper(II) phosphonates (1-4) the two phosphonate ions bridge the four copper(II) ions in a capping coordination action. Each phosphonate ion bridges four copper(II) ions in a mu(4), eta(3) coordination mode or 4.211 of the Harris notation. Variable-temperature magnetic studies on reveal that all four complexes exhibit moderately strong intramolecular antiferromagnetic coupling. The DNA cleavage activity of complexes 1-4 is also described. Compounds 1 and 3 were able to completely convert the supercoiled pBR322 DNA form I to nick form II without any co-oxidant. In contrast, 50% conversion occurred with and 40% with 4. In the presence of magnesium monoperoxyphthalate all four compounds achieved rapid conversion of form I to form II.  相似文献   

6.
Ternary copper(II) complexes involving polypyridyl ligands in the coordination sphere of composition [Cu(tpy)(phen)](ClO4)2 (1), [Cu(tpy)(bipy)](ClO4)2 (2), [Cu(tptz)(phen)](ClO4)2 (3) and [Cu(tptz)(bipy)](BF4)2 (4) where tpy = 2,2':6',2'-terpyridine, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine have been synthesized and characterized by elemental analysis, magnetic susceptibility, X-band e.p.r. spectroscopy and electronic spectroscopy. Single crystal X-ray of (1) has revealed the presence of a distorted square pyramidal geometry in the complex. Magnetic susceptibility measurements at room temperature were in the range of 1.77-1.81 BM. SOD and antimicrobial activities of these complexes were also measured. Crystal data of (1): P-1, a = 9.3010(7) A, b = 9.7900(6) A, c = 16.4620(6) A, Vc = 1342.73(14) A3, Z = 4. The bond distance of CuN in square base is 2+/-0.04 A.  相似文献   

7.
A unique 2:1 cocrystal of mixed Cu(I)/Cu(II) complexes [Cu(I)(H2CPz2)(MeCN)2](ClO4) (1) and [Cu(II)(H2CPz2)2(ClO4)2] (4), a novel ferromagnetic ClO(4-)-bridged bis(mu-hydroxo)dicopper(II) complex, [Cu2(H2CPz2)2(OH)2(ClO4)](ClO4)(CH3CN)(0.5) (5), and a bischelated copper(I) complex, [Cu(H2CPz2)2](ClO4) (2), prepared from a one-pot reaction of [Cu(MeCN)4](ClO4) and H2CPz2, are described. The structures of these complexes have been determined by X-ray crystallographic methods. The Cu(I)-N(acetonitrile) bond distances in complex 1 are nonequivalent (1.907(8) and 2.034(9) A), leading to the dissociation of one MeCN to form a Y-shaped complex, [Cu(I)(H2CPz2)(MeCN)](ClO4) (3), which is oxidized readily in air to form complex 5 with a butterfly Cu2O2 core.  相似文献   

8.
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)](ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at ~0.5 V vs SCE in DMF-0.1 M [Bu(n)(4)N](ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at ~450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 μM, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.  相似文献   

9.
Six new copper(II) complexes of formula [Cu(mu-cbdca)(H2O)]n (1) (cbdca = cyclobutanedicarboxylate), [Cu2(mu-cbdca)2(mu-bipy)2]n (2) (bipy = 4,4'-bipyridine), [Cu(mu-cbdca)(mu-bpe)]n (3) (bpe = 1,2-bis(4-pyridyl)ethane), [Cu(mu-cbdca)(bpy)]2 (4) (bpy = 2,2'-bipyridine), [Cu(terpy)(ClO4)]2(mu-cbdca).H2O (5) (terpy = 2,2':6',2' '-terpyridine), and [Cu(cbdca)(phen) (H2O)].2H2O (6) (phen = 1,10-phenanthroline) were obtained and structurally characterized by X-ray crystallography. Complex 1 is a two-dimensional network with a carboxylate bridging ligand in syn-anti (equatorial-equatorial) coordination mode. Complexes 2 and 3 are formed by chains through syn-anti (equatorial-apical) carboxylate bridges, linked to one another by the corresponding amine giving two-dimensional nets. Complexes 4 and 5 are dinuclear, with the copper ions linked by two oxo (from two different carboxylate) bridging ligands in 4 and with only one carboxylate showing the unusual bis-unidentate mode in complex 5. Complex 6 is mononuclear, with the carboxylate linked to copper(II) in a chelated form. Intermolecular hydrogen bonds and pi-pi stacking interactions build an extended two-dimensional network. Magnetic susceptibility measurements of complexes 1-5 in the temperature range 2-300 K show the occurrence of weak ferromagnetic coupling for 1 and 4 (J = 4.76 and 4.44 cm(-1), respectively) and very weak antiferromagnetic coupling for 2, 3, and 5 (J = -0.94, -0.67, and -1.61 cm(-1), respectively). Structural features and magnetic values are compared with those reported for the similar copper(II) malonate and phenylmalonate complexes.  相似文献   

10.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

11.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

12.
金琼花  徐立军  孙静静  代永成 《化学学报》2009,67(19):2193-2198
合成了3种新的超分子配合物[Cd(H2biim)(2,2'-bipy)(NO3)2] (1), [Cu(H2biim)(2,2'-bipy)(H2O)](NO3)2 (2)和[Zn(H2biim)(2,2'-bipy)(H2O)](NO3)2 (3) (H2biim=双咪唑; 2,2'-bipy=2,2'-联吡啶), 并通过X射线单晶衍射测定了其结构. 配合物1~3均为单斜晶系, 属于P2(1)/c空间群, 在1中, Cd(II)为六配位, 它与双咪唑的2个氮原子, 联吡啶的2个氮原子和2个硝酸根的2个氧原子配位. 在2和3中, Cu(II)和Zn(II)均为五配位的, 它们与双咪唑的2个氮原子、2,2'-联吡啶的两个氮原子和一个水分子配位. 1~3的对称单元均通过双咪唑、硝酸根和水之间形成的氢键R21(7), R21(4) 和R44(18)构筑了1D链状超分子.  相似文献   

13.
Eight oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(H(2)O)(dpt)](2)(mu-Cu(H(2)O)(opba)))(ClO(4))2 (1), ([Ni(H(2)O)(dien)](2)(mu-Cu(pba)))(ClO(4))(2).6H(2)O (2), ([Ni(H(2)O)(Medpt)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (3), ([Ni(H(2)O)(dien)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2.5H(2)O (4), ([Ni(H(2)O)(dpt)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2H(2)O (5), ([Ni(H(2)O)(dien)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (6), ([Ni(2)(dpt)(2)(mu-Cu(H(2)O)(pba))](2)(mu-N(3))(2))Na(2)(ClO(4))(4).6H(2)O (7), and ([Cu(H(2)O)(2)(dpt)Ni(2)(H(2)O)(dpt)(2)](mu-H(2)Me(2)pba(2-)))(ClO(4))(4).3H(2)O (8) in which opba = o-phenylenbis(oxamato), pba = 1,3-propylenebis(oxamato), OHpba = 2-hydroxy-1,3-propylenebis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), dpt = 3,3'-diaminodipropylamine, dien = 2,2'-diaminodiethylamine, and Medpt = 3,3'-diamino-N-methyldipropylamine were synthesized and characterized. The crystal structures of 1, 7, and 8 were solved. For complex 1, the trinuclear entities are linked by hydrogen bonds forming a one-dimensional system, and for complex 8, the presence of van der Waals interactions gives a one-dimensional system, too. For complex 7, the trinuclear entities are self-assembled by azido ligands, given a hexanuclear system; each of these hexanuclear entities are self-assembled through two [Na(O)(3)(H(2)O)(3)] octahedral-sharing one-edge entities, given a one-dimensional system. The magnetic behavior of complexes 2-7 was investigated by variable-temperature magnetic susceptibility measurements. Complexes 2-6 exhibit the minimum characteristic of this kind of polymetallic species with an irregular spin state structure. The Jvalue through the oxamato bridge varied between -88 cm(-1) (for 6) and -111.2 cm(-1) (for 5). For complex 7, the values obtained were J(1) = -101.7 cm(-1) (through the oxamato ligand) and J(2) = -3.2 cm(-1) (through the azido ligand).  相似文献   

14.
The synthesis and characterization of the complexes of Cu(I), Ag(I), Cu(II), and Co(II) ions with 1,2,5-selenadiazolopyridine (psd) is reported. The following complexes have been prepared: [Cu(2)(psd)(3)(CH(3)CN)(2)](2+)2(PF(6)(-)); [(CuCl)(2)(psd)(3)]; [Cu(2)(psd)(6)](2+)2(ClO(4))(-); [Ag(2)(psd)(2)](2+)2(NO(3))(-); [Ag(2)(psd)(2)](2+)2(CF(3)COO)(-); [Cu(psd)(2)(H(2)O)(3)](2+)2(ClO(4))(-)·(psd)(2); [Cu(psd)(4)(H(2)O)](2+)2(ClO(4))(-)·(CHCl(3)); [Cu(psd)(2)(H(2)O)(3)](2+)2(NO(3))(-)·(H(2)O)·(psd)(2), and [Co(psd)(2)(H(2)O)(4)](2+)2(ClO(4))(-)·(psd)(2). The electronic structure of ligand psd, in particular the bond order of Se-N bonds, has been probed by X-ray diffraction, (77)Se NMR, and computational studies. A detailed analysis of the crystal structures of the ligand and the complexes revealed interesting supramolecular assembly. The assembly was further facilitated by the presence of neutral ligands for some complexes (Cu(II) and Co(II)). The molecular structure of the ligand showed that it was present as a dimer in the solid state where the monomers were linked by strong secondary bonding Se···N interactions. The crystal structures of Cu(I) and Ag(I) complexes revealed the dinuclear nature with characteristic metallophilic interactions [M···M] (M = Cu, Ag), while the Cu(II) and Co(II) complexes were mononuclear. The presence of M···M interactions has been further probed by Atoms in Molecules (AIM) calculations. The paramagnetic Cu(II) and Co(II) complexes have been characterized by UV-vis, ESI spectroscopy, and room temperature magnetic measurements.  相似文献   

15.
Four copper complexes with hydroxylated bipyridyl-like ligands, namely [Cu(2)(ophen)(2)] (1), [Cu(4)(ophen)(4)(tp)] (2), [Cu(4)(obpy)(4)(tp)] (3), and [Cu(4)(obpy)(4)(dpdc)].2H(2)O (4), (Hophen=2-hydroxy-1,10-phenanthroline, Hobpy=6-hydroxy-2,2'-bipyridine, tp=terephthalate, dpdc=diphenyl-4,4'-dicarboxylate) have been synthesized hydrothermally. X-ray single-crystal structural analyses of these complexes reveal that 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy) ligands are hydroxylated into ophen or obpy during the reaction, which provides structural evidence for the long-time argued Gillard mechanism. The dinuclear copper(I) complex 1 has three supramolecular isomers in the solid state, in which short copper-copper distances (2.66-2.68 A) indicate weak metal-metal bonding interactions. Each of the mixed-valence copper(i,ii) complexes 2-4 consists of a pair of [Cu(2)(ophen)(2)](+) or [Cu(2)(obpy)(2)](+) fragments bridged by a dicarboxylate ligand into a neutral tetranuclear dumbbell structure. Dinuclear 1 is an intermediate in the formation of 2 and can be converted into 2 in the presence of additional copper(II) salt and tp ligands under hydrothermal conditions. In addition to the ophen-centered pi-->pi* excited-state emission, 1 shows strong emissions at ambient temperature, which may be tentatively assigned as an admixture of copper-centered d-->s,p and MLCT excited states.  相似文献   

16.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers.  相似文献   

17.
The compound [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) (D(1) = dinucleating ligand with two tris(2-pyridylmethyl)amine units covalently linked in their 5-pyridyl positions by a -CH(2)CH(2)- bridge) selectively promotes cleavage of DNA on oligonucleotide strands that extend from the 3' side of frayed duplex structures at a site two residues displaced from the junction. The minimal requirements for reaction include a guanine in the n (i.e. first unpaired) position of the 3' overhang adjacent to the cleavage site and an adenine in the n position on the 5' overhang. Recognition and strand scission are independent of the nucleobase at the cleavage site. The necessary presence of both a reductant and dioxygen indicates that the intermediate responsible for cleavage is produced by the activation of dioxygen by a copper(I) form of the dinuclear complex. The lack of sensitivity to radical quenching agents and the high level of site selectivity in scission suggest a mechanism that does not involve a diffusible radical species. The multiple metal center exhibits a synergy to promote efficient cleavage as compared to the action of a mononuclear analogue [Cu(II)(TMPA)(H(2)O)](ClO(4))(2) (TMPA = tris(2-pyridylmethyl)amine) and [Cu(OP)(2)](2+) (OP = 1,10-phenanthroline) at equivalent copper ion concentrations. The dinuclear complex, [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4), is even capable of mediating efficient specific strand scission at concentrations where [Cu(OP)(2)](2+) does not detectably modify DNA. The unique coordination and reactivity properties of [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) are critical for its efficiency and site selectivity since an analogue, [Cu(II)(2)(DO)(Cl(2))](ClO(4))(2), where DO is a dinucleating ligand very similar to D(1), but with a -CH(2)OCH(2)- bridge, exhibits only nonselective cleavage of DNA. The differences in the reactivity of these two complexes with DNA and their previously established interaction with dioxygen suggest that specific strand scission is a function of the orientation of a reactive intermediate.  相似文献   

18.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

19.
Four new supramolecular compounds of Cu(II)-Ni(II) have been synthesized and characterized: [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(ClO(4))(2) (1), [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(PF(6))(2) (2), [Cu(oxpn)Ni(mu-NCS)(NCS) (tmen)](n) (3), and [Cu(Me(2)oxpn)Ni(mu-NCS)(NCS)(tmen)](n) (4), where oxpn = N,N'-bis(3-aminopropyl)oxamidate, Me(2)oxpn = N,N'-bis(3-amino-2,2'-dimethylpropyl)oxamidate, and tmen = N,N,N',N'-tetramethylethylenediamine. Their crystal structures were solved. Complexes 1 and 2 have the same tetranuclear cationic part but a different counteranion. The cationic part consists of two [Cu(Me(2)oxpn)Ni] moieties linked by SCN(-) bridged ligands and intra-tetranuclear hydrogen bonds. In the case of complex 3, a two-dimensional system was built, the thiocyanate ligand linking the dinuclear units gives a chain, and the chains are linked together by hydrogen bonds; intrachain hydrogen bonds are also present. For complex 4, the thiocyanate ligands produce intermolecular linkages between the dinuclear entities, giving a one-dimensional system; intrachain hydrogen bonds are also present. The magnetic properties of the four complexes were studied by susceptibility measurements vs temperature. DFT calculations were made to study the contribution of the SCN(-) and hydrogen bond bridges in the magnetic coupling.  相似文献   

20.
Several new first-row transition-metal complexes have been synthesised by combining the polynitrile dianion HCTMCP(2-) (hexacyanotrimethylenecyclopropandiide) with neutral, chelating co-ligands; 2,2'-bipyridine, 1,10-phenanthroline and 3-(2-pyridyl)pyrazole. The products cover a remarkable range of species including mononuclear complexes, dimers, charge-separated species and coordination polymers. Complexes containing 2,2'-bipyridine take the form [Mn(2,2'-bipy)(2)(HCTMCP)](2)·2MeOH (1) or [M(2,2'-bipy)(3)](HCTMCP) (2Fe and 2Co) which are dimeric and charge-separated products, respectively. The products obtained using 1,10-phenanthroline were the discrete complex [Co(HCTMCP)(1,10-phen)(2)(H(2)O)]·H(2)O·MeCN (3) and the 1D coordination polymer [Mn(HCTMCP)(1,10-phen)(H(2)O)(MeOH)] (4). Complexes using the 3-(2-pyridyl)pyrazole co-ligand (pypzH) form similar 1D complexes to 4, namely [Mn(pypzH)(HCTMCP)(MeOH)(H(2)O)] (5) and [M(pypzH)(HCTMCP)(MeOH)(2)] (6Co and 6Fe), albeit with different hydrogen-bonding motifs between the chains. The polymeric HCTMCP complexes show weak to zero antiferromagnetic coupling between metal centres and thus no long-range ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号