首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
化学法合成的金属间化合物,其表面状态与冶金法合成的样品不同,使其吸、放氢动力学有较大改进。本文研究了化学法合成的富镧MMNi_5(MM为混合稀土金属)在初始压力2.33~5.57MPa,温度20~60℃范围内的吸氢过程动力学行为,及在20~60℃范围内放氢过程的动力学行为。实验结果表明,吸氢量与时间、初始氢压的关系(1gn-1gt;1g△n—1gP)均为直线关系,并求得吸、放氢初期表观激活能分别为5.23和16.95kJ/molH_2。初步判定MMNi_5在两相区的吸氢过程中,不同吸氢阶段,速率限制性环节不同。吸氢初始阶段和初始氢压较低时,表面过程为限制性环节,为一级反应。当吸氢量逐渐增大或初始氢压较高时,速率限制性环节转化为扩散控制,反应转为0.5级。MMNi_5氢化物在两相区的放氢反应是一级反应,速率限制性环节是氢原子向固体表面的扩散过程。  相似文献   

2.
LaNi5合金的吸氢动力学   总被引:2,自引:0,他引:2  
研究了LaNi_5-H体系的吸氢反应动力学。在吸放氢可逆反应同时考虑的情况下, 求得了速度方程的解析解。在α相区20—50 ℃的温度范围内, 吸氢速度常数k_α为0.08—0.41 s~(-1); 脱氢速度常数k_d为4.8—25 MPa·s~(-1)。吸氢反应的表观活化能E_α为35 kJ(mol H_2)~(-1)。在α+β相区的吸氢较α相区慢得多。起始阶段吸氢速度对氢压为一级, 反应受氢化物表面上氢分子解离控制。随着吸氢反应深度的增大, 吸氢速度变为固相中的界面反应控制。速度常数受温度的影响很小。α+β相区的压力平台前半段和后半段有着不同的吸氢速度。  相似文献   

3.
采用高能球磨法制备了3NaBH4/ErF3复合储氢材料, 并研究了其相结构和储氢性能. X射线衍射(XRD)显示, NaBH4和ErF3在球磨过程中未发生反应; 同步热分析(TG-DSC)测试结果表明, 3NaBH4/ErF3体系在420℃开始放氢, 比相同测试条件下纯NaBH4的放氢温度降低了约100℃, 放氢量为3.06%(质量分数). 压力-成分-温度(Pressure-Composition-Temperature, PCT)性能测试结果显示, 3NaBH4/ErF3复合储氢材料在较低的温度(355~413℃)及平台氢压(<1 MPa)下即拥有良好的可逆吸放氢性能, 最高可逆吸氢量可达到2.78%(质量分数), 吸氢后体系重新生成了NaBH4相. 计算得吸氢焓变仅为-36.8 kJ/mol H2; 而放氢焓变为-180.8 kJ/mol H2. NaBH4在ErF3的作用下提高了热动力学性能, 并实现了可逆吸放氢.  相似文献   

4.
本文报导了一个新发现的H_2置换Ni(100)面上化学吸附CO的表面反应.CO分子在Ni(100)面上的化学吸附(吸附热为126J/mole)比氢的原子吸附(吸附热为96kJ/mole)强得多,在通常条件下,H_2不能置换Ni(100)面上化学吸附的CO.但是当H_2压高于1×10~(-4)乇时,在温度为270~330K的范围内可引起H_2置换化学吸附CO的表面反应.本文用荧光产率近边吸收谱(FYNES)和程序升温脱附(TPD)对H_2置换化学吸附CO的表面反应动力学进行了详细的研究.FYNES谱在原理上与NEXAFS相同,通过测量含碳受激分子在弛豫过程中释放的碳—Kα荧光产率代替测量Auger电子产率,所以可在有气氛压力下对表面反应动力学过程进行原位考察.实验结果表明,在氢压为10~(-4)至10~(-1)乇和单晶温度为270至330K范围内,置换反应的速度公式可表示为:-dθ/dt=kθP_(H2)~(0:4)式中θ为CO的表面覆盖度,P_(H2)为气相氢压.置换反应是一个热活化过程,它随CO覆盖度的降低显示出二个不同的动力学区域,置换反应的活化能在高覆盖度下为29±4kJ/mole,在低覆盖度下为46±4kJ/mole.这比CO在Ni(100)面上的吸附热105~126kJ/mole约低75~80J/mole.本文对置换反应的控制步骤和H_2置换的机理进行了讨论  相似文献   

5.
应用高能球磨法制备Mg-x%Mg1.8La0.2Ni (x=10、20和30) 纳米复合储氢材料. X射线衍射(XRD)、透射电镜(TEM)和选区电子衍射(SAED)测试表明,该复合材料具有纳米晶和非晶态混合结构的性质,吸氢温度降低,较好的吸放氢动力学性能,在423K,2.5MPa氢压的条件下,50s内即可达到最大吸氢量.  相似文献   

6.
采用氢化燃烧法制备La2-xNixMg17(x=0.5, 1, 1.5)三元体系储氢材料, 对其热力学、动力学进行研究发现: 该体系材料具有很好的活性和较高的储氢量, 其中La1.5Ni0.5Mg17在573 K时吸放氢量分别为5.40和5.15 mass% H. 在553 K下, 体系α-β相区在600 s之内吸放氢反应分数均大于91%, 随着含Ni量的增加材料储氢容量降低, 吸放氢速率增大.物相分析知道体系吸氢后的主相是MgH2, 放氢后主相为Mg, 同时存在Mg2Ni, LaNi5或LaH3等催化物质, 从而使材料的氢化动力学性能得以明显改善.  相似文献   

7.
采用感应熔炼技术在Ar气氛保护下制备得到LaMg2Ni与Mg2Ni合金。X射线衍射(XRD)图表明LaMg2Ni合金在吸氢过程中分解为LaH3相和Mg2NiH4相,放氢过程中LaH3相转化为La3H7相。与Mg2Ni合金相比,LaMg2Ni合金显示出优良的吸氢动力学性能,这是由于镧氢化合物的存在及其在吸氢过程中所发生的相转变所造成的。LaMg2Ni合金280 s内吸氢即可达到最大储氢量的90%以上,而Mg2Ni合金则需要1200 s才能达到,且在相同温度下LaMg2Ni合金的吸氢反应速率常数大于Mg2Ni合金速率常数。镧氢化合物不仅有利于改善动力学性能,而且可以提高热力学性能。LaMg2Ni合金中的Mg2Ni相氢化反应焓与熵分别为-53.02 kJ.mol-1和84.96 J.K-1.mol-1(H2),这一数值小于单相Mg2Ni氢化反应焓与熵(-64.50 kJ.mol-1,-123.10 J.K-1.mol-1(H2))。压力-组成-温度(P-C-T)测试结果表明在603 K至523 K温度范围内,LaMg2Ni合金储氢容量保持稳定为1.95wt%左右,然而Mg2Ni合金的储氢容量则由4.09wt%衰减为3.13wt%,Mg2Ni合金的储氢容量在523K低温下仅为603 K时的76.5%,表明镧氢化合物能够改善Mg2Ni合金低温下的吸放氢性能。  相似文献   

8.
在3.0 MPa氢气气氛下机械合金化Mg-60%LaNi5制备出镁基复合储氢材料.XRD分析表明氢气氛下球磨60h后的物相为Mg2NiH4,β-MgH2和LaH3.SEM及EDS分析表明该复合材料成分分布均匀.对材料的吸氢动力学特性研究表明:该复合材料具有较高的活性,室温5.0MPa氢气压力下15min内的吸氢量为2.37%;在5.0 MPa氢气压力和373~473 K的条件下,可以在1min之内完成饱和吸氢量的80%以上;在5.0 MPa氢气压力和523~553 K之间的条件下,可以在1min之内完成饱和吸氢量的90%以上;在553 K的最大吸氢量为4.23%.  相似文献   

9.
Fe-Mn催化剂的费托合成产物分布动力学   总被引:1,自引:0,他引:1  
在固定床反应器上进行了Fe-Mn超细粒子催化剂F -T合成反应动力学研究。以碳化物机理为基础推导出简化的F -T合成产物生成动力学模型 : RCnH2n 2 =kHC5PH2 (1-α)αn在温度 5 76~ 6 10K ,压力 1 5~ 2 5MPa ,空速 2 5 0 0~ 45 0 0h-1和原料气H2 /CO比为 2 0的条件下进行动力学试验 ,通过模型拟合 ,求得动力学方程参数 : kHC5=kHC5(5 80K)exp[EaR(1T - 15 80 ) ]其中 ,kHC5(5 80K) =2 82× 10 -6mol/ (mlcat·MPa·s) ,Ea=6 6 0 7kJ/mol结果表明 ,该模型与实验值拟合较好 ,链增长几率α与温度和反应器内H2 /CO比具有简单的关系 :α =1/ (1 ρRHC)。  相似文献   

10.
Mg-20%(RE-Ni)(RE=La,Y,Mm)复合材料储放氢性能研究   总被引:1,自引:0,他引:1  
通过磁悬浮熔炼和反应球磨相结合的方法成功制备出Mg-20wt%(RE-Ni)(RE=La,Y,Mm)复合储氢材料,主要研究了材料的物相结构和储放氢性能.结果表明.Mg-20wt%(RE-Ni)(RE=La,Y,Mm)复合储氢材料,具有相似的物相结构和吸放氢热力学性能,吸氢相均为MgH2和Mg2Ni,在同一温度下,合金只有一个放氢平台,表明两相具有良好的协同放氢效应.在复合体系中,Mg-20wt%(Y-Ni)具有最佳的综合储氢性能,表明Y具有最佳的催化效果,其在293 K,3.0 MPa H2,10 min的吸氢量和573 K,对0.1 MPa,15 min的放氢量可分别达到3.92%和4.75%,实现了室温快速大量吸氢和较温和条件下的快速放氢.  相似文献   

11.
热缓冲剂对稀土贮氢合金吸氢动力学的影响   总被引:1,自引:0,他引:1  
以铜粉作为热缓冲剂添加到稀土贮氢合金粉中,应用动力学机理函数计算机拟合的方法,研究了ML(NiCoMnAlCu)5和Mm(NiCoMnAlCu)5(ML为富镧混合稀土金属,Mm为富铈混合稀土金属)在α+β相区恒温吸氢动力学.研究结果表明,当铜粉与贮氢合金粉达到一定比例时,能够消除热传导对吸氢动力学的影响.富铈稀土合金和富镧稀土合金吸氢均受氢在β相的内扩散控制,合金中随La/Ce比例的减小,吸氢速度加快.  相似文献   

12.
通过球磨法制备了MgH_2-MoS_2-PP(PP=热解聚苯胺,wMoS_2=wPP=8.33%)复合材料。与纯MgH_2对比研究发现,复合材料的初始放氢温度从650 K下降到550 K,并且在573 K下,75 min内的放氢量从0.38%(w/w,下同)提高到2.36%。在423 K下,放氢后产物可在40 min内吸氢2.45%,比纯MgH_2高出2.13倍。放氢反应的活化能比纯MgH_2(101.83 kJ·mol~(-1))降低了28.81 kJ·mol~(-1)。MgH_2-MoS_2-PP复合材料的性能提高是由于PP能够均匀地减小Mg颗粒尺寸,并提高MoS_2在体系放氢与再吸氢过程中的催化效率。  相似文献   

13.
在22-60℃范围内研究了贮氢合金MnNi3.55Co0.75Mn0.44Al0.3(Mn为富铈混合稀土金属)在a和α+β相区恒温吸氢动力学过程。研究结果表明,合金在α相区吸氢受化学反应控速,动力学规律不受氢初压的影响,在整个α+β相区吸氢过程中,受氢在合金氢物中的扩散控速,得到相应的速率方程和表观活化能。  相似文献   

14.
应用高能球磨法制备Mg-x%Mg1.8La0.2Ni(x=10、20和30)纳米复合储氢材料.X射线衍射(XRD)、透射电镜(TEM)和选区电子衍射(SAED)测试表明,该复合材料具有纳米晶和非晶态混合结构的性质,吸氢温度降低,较好的吸放氢动力学性能,在423K,2.5MPa氢压的条件下,50s内即可达到最大吸氢量.  相似文献   

15.
采用改进的中压反应设备,在以硫化钨镍加于酸性载体上的双重性催化剂上,进行了正己烷异构化动力学的研究。从所得结果建立了描述空间速度、氢压等对转化率影响的动力学关联式: P_(n_0),P_(H_2)为反应器入口正己烷及氢气压力; v_m为正己烷克分子空间速度; x为转化卒;A及B为常数。式中(1/(AP_(H_2)~(0.5))+B与温度的关系符合Arrhenius关系式,其视活化能为26.6千卡。根据所得结果,对正己烷在双重性催化剂上异构化反应机理进行了讨论。  相似文献   

16.
利用真空感应熔炼技术制备了LaMg2Cu1-xNix(x=0,0.10,0.25,0.50,0.75,0.90)合金,并在0.06MPa氩气保护下于723K退火6h得到测试所用合金铸锭。XRD表明合金LaMg2Cu1-xNix含有ThCr2Si2型的LaMg2Cu2相和CeMg3型的LaMg3相以及少量未知相,随着x的增加,LaMg2Cu2相的晶胞体积先增加后减小,而LaMg3相的晶胞体积几乎不变。通过SEM观察,发现Ni可以有效的减小合金在吸放氢过程中的粉化。当x0.50时,Ni对合金的吸氢速率降低;而当x≥0.50时,Ni的加入可以极大的提高合金的吸氢速率,合金在50s左右就能达到最大吸氢量的90%。当x=0.50时,合金具有较好的综合储氢性能,合金在473K下吸氢量为3.741wt%,49s就可达到最大吸氢量的90%以上。  相似文献   

17.
本文采用程序升温脱附(TPD)技术研究了光沉积方法制备的Pt/TiO_2催化剂经过氧化、还原后氧、氢的脱附行为.光沉积过程中,Pt/TiO_2表面上可以生成大量的吸咐氢,在TPD中脱附;同时Pt/TiO_2表面上化学吸附的水在TPD过程中也可以分解释氢.氧化处理的Pt/TiO_2在TPD过程中于550~750K温区出现氧脱附峰,随着氧化温度升高,脱附峰位向高温移动,经实验证明,这种可脱附活泼氧物种的生成是由样品前身中留存氢引起的.还原处理的Pt/TiO_2在TPD过程中分别在300~600和大于600K出现两个氢脱附峰,认为是由于表面羟基和钛—氢(Ti~(4+)—H~-)物种的分解释氢引起的Pt/TiO_2上活泼氧物种的存在,增加了样品在室温条件下的吸氢量;在中温(473~573K)这种活泼氧物种则和氢发生反应,减少了TPD过程中的脱氢量;Pt/TiO_2在大于673K温度还原,可以消除活泼氧物种的影响.  相似文献   

18.
采用固溶烧结法制备了Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金,利用X射线衍射仪和压力-组成-温度测试仪等研究了Co含量对合金相结构和储氢性能的影响.结果表明,合金由Mg_2Ni型Mg_2(Ni,Co)主相及少量Mg和Mg Ni3Co新相组成.Mg2(Ni,Co)具有良好的可逆储氢性能,吸氢形成Mg_2Ni_(0.9)Co_(0.1)H_4型四元氢化物,其具有与父系氢化物HT-Mg_2NiH_4相近的放氢焓变(ΔHd=63.9 k J/mol H2).Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金具有良好的放氢动力学性能,二维相界面迁移为放氢过程的控制步骤.随着Co含量的增加,合金的放氢活化能(Ea)降低,其中,Mg_2Ni_(0.8)Co_(0.2)的Ea降低到54.0 k J/mol.  相似文献   

19.
文中采用机械合金化(MA)和氢化燃烧法(HCS)制备了Mg1.9Al0.1Ni,通过对它们储氢性能的对比研究发现,MA优于HCS.采用MA制得的Mg1.9Al0.1Ni储氢合金具有较高的活性和高储氢量,对PCT结果进行计算,得出温度和氢平衡压的关系式.Mg1.9Al0.1Ni(MA)553K时100s内吸放氢量分别为2.67和2.54 mass%H.用XRD方法进行物相分析,表明添加适量Al没有改变Mg2Ni的物相结构,由于MA能够制备出纳米晶粒,使得Mg1.9Al0.1Ni合金具有更好的储放氢动力学性能.  相似文献   

20.
通过XRD,SEM,恒温等容储氢性能测试等方法,研究了Ce添加对Ti26.5Cr20(V45Fe8.5)0.98Si2Cex(x=0~2.0%(原子分数))合金结构及储氢性能的影响.结果表明,Ti16.5Cr20如(V45Fe8.5)0.98 Si2Cex(x=0~2.0%)合金为BCC和C14 Laves相双相合金,随合金中Ce添加量的增加,合金的晶格常数增大,而合金中C14 Laves相的含量减少.平衡压从0.233 MPa降低到0.167 MPa,合金的吸氢动力学性能得到改善,最大吸氢量也由3.08%增加至3.19%(质量分数),PCT曲线的平台斜率减小.合金的储氢性能的改善与Ce的加入抑制了部分C14 Laves相的析出,减少了合金中C14 Laves相的含量密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号