首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
双极型晶体管损坏与强电磁脉冲注入位置的关系   总被引:9,自引:7,他引:2       下载免费PDF全文
 利用时域有限差分法,对双极型晶体管(BJT)在强电磁脉冲作用下的瞬态响应进行了2维数值模拟,研究了电磁脉冲从不同极板注入时BJT的响应情况,根据温度分布的集中程度分析了发生烧毁的难易程度。模拟得出:发射极注入最容易导致烧毁,集电极注入次之,基极注入相对不易导致烧毁;发射极注入烧毁所消耗能量随着脉冲电压上升而下降,到30 V以后基本与电压的升高无关,集电极注入烧毁所消耗的能量则随着电压上升而上升,到100 V以后由于BE结上热点的出现而开始下降。  相似文献   

2.
 借助自主开发的2维半导体器件-电路联合仿真器,研究了电磁脉冲从发射极注入双极型晶体管时,外电路的影响,分析了共基极接法晶体管的电流分配系数,然后在此基础上研究了3种典型外电路元件的影响。结果表明:当脉冲从发射极注入时,基极外接电阻对器件烧毁过程影响不大;集电极外接正电压源等效于削减电磁脉冲的幅度,有延缓器件烧毁的作用;集电极外接电阻能明显提高器件对电磁脉冲的耐受性。  相似文献   

3.
双极晶体管在强电磁脉冲作用下的损伤效应与机理   总被引:7,自引:0,他引:7       下载免费PDF全文
针对典型n+-p-n-n+结构的双极晶体管,从器件内部电场强度、电流密度和温度分布变化的分析出发,研究了在强电磁脉冲(electromagnetic pulse,EMP)作用下其内在损伤过程与机理.研究表明,双极晶体管损伤部位在不同幅度的注入电压作用下是不同的,注入电压幅度较低时,发射区中心下方的集电区附近首先烧毁,而在高幅度注入电压作用下,由于基区-外延层-衬底构成的PIN结构发生击穿,导致靠近发射极一侧的基极边缘处首先发生烧毁.利用数据分析软件,对不同注入电 关键词: 双极晶体管 强电磁脉冲 器件损伤 损伤功率  相似文献   

4.
基极注入强电磁脉冲对双极型晶体管的作用   总被引:6,自引:3,他引:3       下载免费PDF全文
 空间电磁脉冲注入硅双极型晶体管后可能会导致晶体管烧毁。借助2维数值仿真和理论分析研究了基极注入短电磁脉冲对双极型晶体管的作用,得出结论:晶体管的热斑位于基极边缘,由于该点既是电场峰所在,又是电流最密集之处,热量产生集中,因此基极注入脉冲使晶体管烧毁所需的能量比其它两电极注入要少;在基极注入短脉冲作用下,晶体管烧毁所需能量几乎不随脉冲宽度变化;烧毁所需脉冲功率近似与脉冲宽度成反比。  相似文献   

5.
双极晶体管微波损伤效应与机理   总被引:4,自引:0,他引:4       下载免费PDF全文
马振洋  柴常春  任兴荣  杨银堂  陈斌 《物理学报》2012,61(7):78501-078501
结合Si基n+-p-n-n+外延平面双极晶体管, 考虑了器件自热、高电场下的载流子迁移率退化和载流子雪崩产生效应, 建立了其在高功率微波(high power microwave, HPM)作用下的二维电热模型. 通过分析器件内部电场强度、电流密度和温度分布随信号作用时间的变化, 研究了频率为1 GHz的等效电压信号由基极和集电极注入时双极晶体管的损伤效应和机理. 结果表明集电极注入时器件升温发生在信号的负半周, 在正半周时器件峰值温度略有下降, 与集电极注入相比基极注入更容易使器件毁伤, 其易损部位是B-E结. 对初相分别为0和π的两个高幅值信号的损伤研究结果表明, 初相为π的信号更容易损伤器件, 而发射极串联电阻可以有效的提高器件的抗微波损伤能力.  相似文献   

6.
建立了双极晶体管(BJT)在强电磁脉冲作用下的二维电热模型, 对处于有源放大区的BJT在基极注入强电磁脉冲时的瞬态响应进行了仿真. 结果表明, BJT烧毁点位置随注入脉冲幅度变化而变化, 低脉冲幅度下晶体管烧毁是由发射结反向雪崩击穿所致, 烧毁点位于发射结柱面区; 而在高脉冲幅度下, 由基区-外延层-衬底组成的p-n-n+ 二极管发生二次击穿导致靠近发射极一侧的基极边缘率先烧毁; BJT的烧毁时间随脉冲幅度升高而减小, 而损伤能量则随之呈现减小-增大-减小的变化趋势, 因而存在一个极小值和一个极大值. 仿真与实验结果的比较表明, 本文建立的晶体管模型不但能预测强电磁脉冲作用下BJT内部烧毁发生的位置, 而且能够得到损伤能量. 关键词: 双极晶体管 强电磁脉冲 烧毁点位置 损伤能量  相似文献   

7.
利用有源传输线模型与漂移-扩散模型的耦合计算模型,对在瞬态X射线辐照下电缆末端典型N+-p-n-N+结构的双极晶体管负载的毁伤效应与规律进行研究,通过分析双极晶体管内部晶格温度分布,判定是否处于毁伤状态,总结双极晶体管烧毁时间和烧毁所需能量与脉冲X射线脉冲宽度和注量之间的关系。结果表明:随着脉冲X射线脉宽增加,双极晶体管烧毁能量变化较小,烧毁时间逐渐增加;随着注量增加,烧毁时间逐渐降低,在5.86J/cm2以下时,烧毁所需能量基本相同,之后呈指数逐渐增加,并通过曲线拟合得到损伤规律的经验公式。  相似文献   

8.
通过气体放电产生更高浓度的低温等离子体要求具有纳秒上升沿和纳秒脉宽的高重频快脉冲,而目前被广泛使用的MOSFET和IGBT都无法满足这些参数要求,而双极结型晶体管(BJT)的集电极与发射极之间的雪崩击穿过程具有快导通、快恢复、高稳定性等优点,适合作为小型Marx发生器的自击穿开关。文中对用多种型号的BJT进行击穿特性比较测试实验,发现可以通过改变BJT的门极和发射极的并联电阻来调节其雪崩击穿电压,实现一定范围的工作电压。雪崩击穿恢复特性实验表明,当击穿电流衰减到低于维持电流时,BJT就会开始恢复绝缘而关断,通过改变电路中的参数以控制击穿电流的变化就可以控制BJT的雪崩击穿导通时间(即导通脉宽)。将这些结论应用到实际电路中,可获得上升沿5 ns、脉宽为10 ns、幅值2 kV、重复频率高达100 kHz的纳秒快脉冲,可用于激发高浓度低温等离子体。  相似文献   

9.
利用CFBR-Ⅱ快中子反应堆(中国第二座快中子脉冲堆)和60Co装置开展不同顺序的中子/γ辐照双极晶体管的实验。在集电极-发射极电压恒定条件下,测量了双极晶体管电流增益随集电极电流的变化曲线,研究不同顺序中子/γ辐照对双极晶体管电流增益的影响。分析实验结果发现,集电极-发射极电压一定时,集电极电流极低情况下电流增益退化比较大,随集电极电流增加电流增益逐渐减小;就实验选中的两类晶体管而言,先中子后γ辐照造成双极晶体管电流增益的退化程度大于先γ后中子辐照,而且PNP型晶体管比NPN型晶体管差异更明显。本文进行了双极晶体管电离/位移协同辐照效应相关机理的初步探讨。  相似文献   

10.
微波低噪声晶体管电磁脉冲敏感端对研究   总被引:3,自引:0,他引:3       下载免费PDF全文
 在研究电磁脉冲对微电子器件作用效应的过程中,针对三种不同型号的微波低噪声硅半导体器件进行了电磁脉冲(静电放电和方波电磁脉冲)直接注入的试验,结果发现该类器件对电磁脉冲最敏感的端对并不是EB结(发射极-基极),而是CB结(集电极-基极)。通过对器件结构与放电过程的分析,分别得出了CB结、EB结的损伤机理:随放电电压的增大,热载流子撞击界面,使流经界面处的少数载流子复合速度增加,少数载流子在界面处及界面附近被复合,从而降低了器件的电流放大系数。而无论从哪个结注入,器件完全失效均是由热二次击穿造成。从而更进一步地证明了CB结比EB结更敏感。  相似文献   

11.
e design and fabricate an InGaAs/InP double heterostructure bipolar transistor (DHBT). The spike of the conduction band discontinuity between InGaAs base and InP collector is successfully eliminated by insertion of an InGaAs layer and two InGaAsP layers. The current gain cutoff frequency and maximum oscillation frequency are as high as 155 and 144GHz. The breakdown voltage in common-emitter configuration is more than 7V. The high cutoff frequency and high breakdown voltage make high-speed andhigh-power circuits possible  相似文献   

12.
In this work, an improved InGaP/GaAs heterostructure-emitter bipolar transistor (HEBT) with an InGaP wide-bandgap collector is investigated. In the emitter–base region, the thin narrow bandgap n-type GaAs layer is sandwiched between a wide-bandgap N-type InGaP confinement layer and a narrow-bandgap p-type GaAs base layer. In the collector–base structure, an undoped 30 Å-thick GaAs spacer and a heavily doped 30 Å-thick GaAs are inserted between the base and collector. Due to the absence of a potential spike both at the base–emitter and base–collector junctions, the studied device shows lower offset and saturation voltages. In addition, not only are the excellent current–voltage characteristics observed, but also the undesired effects, e.g. the electron blocking effect, are completely eliminated.  相似文献   

13.
The layer structure of InGaAs/InP double heterojunction bipolar transistor (DHBT) is designed to enhance the frequency performance and breakdown voltage. The composition-graded base structure is used to decrease the base transit time. The InGaAs setback layer and two highly doped InGaAsP layers are used to eliminate the conduction band spike of the collector. The submicron-emitter InGaAs/InP DHBT is fabricated successfully. The base contact resistance is greatly decreased by optimization of contact metals. The breakdown voltage is more than 6V. The current gain cutoff frequency is as high as 170GHz and the maximum oscillation frequency reached 253GHz. The DHBT with such high performances can be used to make W-band power amplifier.  相似文献   

14.
In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.  相似文献   

15.
Coupling electron‐hole (e‐ h+) and electron‐ion plasmas across a narrow potential barrier with a strong electric field provides an interface between the two plasma genres and a pathway to electronic and photonic device functionality. The magnitude of the electric field present in the sheath of a low temperature, nonequilibrium microplasma is sufficient to influence the band structure of a semiconductor region in immediate proximity to the solid‐gas phase interface. Optoelectronic devices demonstrated by leveraging this interaction are described here. A hybrid microplasma/semiconductor photodetector, having a Si cathode in the form of an inverted square pyramid encompassing a neon microplasma, exhibits a photosensitivity in the ~420–1100 nm region as high as 3.5 A/W. Direct tunneling of electrons into the collector and the Auger neutralization of ions arriving at the Si surface appear to be facilitated by an n ‐type inversion layer at the cathode surface resulting from bandbending by the microplasma sheath electric field. Recently, an npn plasma bipolar junction transistor (PBJT), in which a low temperature plasma serves as the collector in an otherwise Si device, has also been demonstrated. Having a measured small signal current gain hfe as large as 10, this phototransistor is capable of modulat‐ing and extinguishing the collector plasma with emitter‐base bias voltages <1 V. Electrons injected into the base when the emitter‐base junction is forward‐biased serve primarily to replace conduction band electrons lost to the collector plasma by secondary emission and ion‐enhanced field emission in which ions arriving at the base‐collector junction deform the electrostatic potential near the base surface, narrowing the potential barrier and thereby facilitating the tunneling of electrons into the collector. Of greatest significance, therefore, are the implications of active, plasma/solid state interfaces as a new frontier for plasma science. Specifically, the PBJT provides the first opportunity to control the electronic properties of a material at the boundary of, and interacting with, a plasma. By specifying the relative number densities of free (conduction band) and bound (valence band) electrons at the base‐collector interface, the PBJT's emitter‐base junction is able to dictate the rates of secondary electron emission (including Auger neutralization) at the semiconductor‐plasma interface, thereby offering the ability to vary at will the effective secondary electron emission coefficient for the base surface (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号