首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ?1<α≤0 and let $$L_n^{(\alpha )} (x) = \frac{1}{{n!}}x^{ - \alpha } e^x \frac{{d^n }}{{dx^n }}(x^{\alpha + n} e^{ - x} )$$ be the generalizednth Laguerre polynomial,n=1,2,… Letx 1,x 2,…,x n andx*1,x*2,…,x* n?1 denote the roots ofL n (α) (x) andL n (α)′ (x) respectively and putx*0=0. In this paper we prove the following theorem: Ify 0,y 1,…,y n ?1 andy 1 ,…,y n are two systems of arbitrary real numbers, then there exists a unique polynomialP(x) of degree 2n?1 satisfying the conditions $$\begin{gathered} P\left( {x_k^* } \right) = y_k (k = 0,...,n - 1) \hfill \\ P'\left( {x_k } \right) = y_k^\prime (k = 1,...,n). \hfill \\ \end{gathered} $$ .  相似文献   

2.
Letx 1, …,x n be givenn distinct positive nodal points which generate the polynomial $$\omega _n (x) = \prod\limits_{i = 1}^n {(x - x_i )} .$$ Letx*1, …,x* n?1 be the roots of the derivativeω n (x) and putx 0=0. In this paper, the following theorem is proved: Ify 0, …,y n andy1, …,y n?1 are arbitrary real numbers, then there exists a unique polynomialP 2n?1(x) of degree 2n?1 having the following interpolation properties: $$P_{2n - 1} (x_j ) = y_j (j = 0,...,n),$$ , $$P_{2n - 1}^\prime (x_j^* ) = y_j^\prime (j = 1,...,n - 1).$$ . This result gives the theoretical completion of the original Pál type interpolation process, since it ensures uniqueness without assuming any additional condition.  相似文献   

3.
Let (X 1,Y 1),...(X n ,Y n ) be a random sample from the (k+1)-dimensional multivariate density functionf *(x,y). Estimates of thek-dimensional density functionf(x)=∫f *(x,y)dy of the form $$\hat f_n (x) = \frac{1}{{nb_1 (n) \cdots b_k (n)}}\sum\limits_{i = 1}^n W \left( {\frac{{x_1 - X_{i1} }}{{b_1 (n)}}, \cdots ,\frac{{x_k - X_{ik} }}{{b_k (n)}}} \right)$$ are considered whereW(x) is a bounded, nonnegative weight function andb 1 (n),...,b k (n) and bandwidth sequences depending on the sample size and tending to 0 asn→∞. For the regression function $$m(x) = E(Y|X = x) = \frac{{h(x)}}{{f(x)}}$$ whereh(x)=∫y(f) * (x, y)dy , estimates of the form $$\hat h_n (x) = \frac{1}{{nb_1 (n) \cdots b_k (n)}}\sum\limits_{i = 1}^n {Y_i W} \left( {\frac{{x_1 - X_{i1} }}{{b_1 (n)}}, \cdots ,\frac{{x_k - X_{ik} }}{{b_k (n)}}} \right)$$ are considered. In particular, unform consistency of the estimates is obtained by showing that \(||\hat f_n (x) - f(x)||_\infty \) and \(||\hat m_n (x) - m(x)||_\infty \) converge completely to zero for a large class of “good” weight functions and under mild conditions on the bandwidth sequencesb k (n)'s.  相似文献   

4.
LetX 1,X 2,... be independent random variables, all with the same distribution symmetric about 0; $$S_n = \sum\limits_{i = 1}^n {X_i } $$ It is shown that if for some fixed intervalI, constant 1<a≦2 and slowly varying functionM one has $$\sum\limits_{k = 1}^n {P\{ S_k \in I\} \sim \frac{{n^{1 - 1/\alpha } }}{{M(n)}}} (n \to \infty )$$ then theX i belong to the domain of attraction of a symmetric stable law.  相似文献   

5.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

6.
Letx be a point such that its expansion by Jacobi's algorithm does not possess “Störungen” (in the sense ofPerron). Let $$F(x,g) = \frac{{A_{_0 }^{(g + n + 1)} + \sum\limits_{j = 1}^n {A_0^{(g + j)} x_j^{(g)} } }}{{A_{_0 }^{(g + 1)} }}$$ and let ξ>1 satisfy ξn+1=ξn+1. Then at least one of 2n+1 consecutive values of g satisfiesF(x,g) > ξn+nξn?1.  相似文献   

7.
LetR be the reals ≥ 0. LetF be the set of mapsf: {1, 2, ?,n} →R. Choosew ∈ F withw i = w(i) > 0. PutW i = w1 + ? + wi. Givenf ∈ F, define \(\bar f\) F by $$\bar f\left( i \right) = \frac{{\left\{ {w_i f\left( 1 \right) + \ldots + w_i f\left( i \right)} \right\}}}{{W_i }}.$$ Callf mean increasing if \(\bar f\) is increasing. Letf 1, ?, ft be mean decreasing andf t+1,?: ft+u be mean increasing. Put $$k = W_n^u \min \left\{ {w_i^{u - 1} W_i^{t - u} } \right\}.$$ Then $$k\mathop \sum \limits_{i = 1}^n w_i f_1 \left( i \right) \ldots f_{t + u} \left( i \right) \leqslant \mathop \prod \limits_{j = 1}^{t + u} (\mathop \sum \limits_{i = 1}^n w_i f_1 (i)).$$   相似文献   

8.
пУсть жАДАНы Ужлы $$ - \infty< x_1< x_2< ...< x_k< x_{k + 1}< ...< x_n< + \infty ,$$ , И пУстьx 1 * <x 2 * <...<x n-1 * — кОРНИ МНОгО ЧлЕНА Ω′(х). гДЕ $$\omega (x) = \prod\limits_{k = 1}^n {(x - x_k ).} $$ В РАБОтЕ ИсслЕДУЕтсь жАДАЧА: кАк ОпРЕДЕлИт ь МНОгОЧлЕНР(х) МИНИМАльНОИ стЕп ЕНИ, Дль кОтОРОгО ВыпОлНь Утсь слЕДУУЩИЕ ИНтЕР пОльцИОННыЕ УслОВИь гДЕ {y k И {y k′}-жАДАННы Е сИстЕМы жНАЧЕНИИ.  相似文献   

9.
Suppose{e i} i=1 n and{f i} i=1 n are symmetric bases of the Banach spacesE andF. Letd(E,F)≦C andd(E,l n 2 )≧n' for somer>0. Then there is a constantC r=Cr(C)>0 such that for alla i∈Ri=1,...,n $$C_r^{ - 1} \left\| {\sum\limits_{i = 1}^n {a_i e_i } } \right\| \leqq \left\| {\sum\limits_{i = 1}^n {a_i f_i } } \right\| \leqq C_r \left\| {\sum\limits_{i = 1}^n {a_i e_i } } \right\|$$ We also give a partial uniqueness of unconditional bases under more restrictive conditions.  相似文献   

10.
The augmented penalty function is used to solve optimization problems with constraints and for faster convergence while adopting gradient techniques. In this note, an attempt is made to show that, ifx* ∈S maximizes the function $$W(x,\lambda ,{\rm K}) = f(x) - \sum\limits_{j = 1}^n {\lambda _j C_j (x)} - K\sum\limits_{j = 1}^n {C_j ^2 (x)} ,$$ thenx* maximizesf(x) over all thosexS such that $$C_j (x) \leqslant C_j ,j = 1,2, \ldots ,n,$$ under the assumptions that the λ j 's andk are nonnegative, real numbers. Here,W(x, λ,K),f(x), andC j (x),j=1, 2,...,n, are real-valued functions andC j (x) ≥ 0 forj=1, 2,...,n and for allx. The above result is generalized considering a more general form of the augmented penalty function.  相似文献   

11.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

12.
LetF be a mapping of the Banach spaceX into itself. A convergence theorem for the iterative solution ofF(x)=0 is proved for the multipoint algorithmx n+1=x n ?ø(x n ), where $$\phi (x) = F\prime_x^{ - 1} \left[ {F(x) + F\lgroup {x - F\prime_x^{ - 1} F(x)} \rgroup} \right]$$ andF′x is the Frechet derivative ofF. The theorem guarantees that, under appropriate conditions onF, the multipoint sequence {x n } generated by ø converges cubically to a zero ofF. The algorithm is applied to the nonlinear Chandrasekhar integral equation $$\frac{1}{2}\omega _0 x(t)\int_0^1 {\frac{{tx(s)}}{{s + t}}ds - x(t) + 1 = 0}$$ where ω0>0. A discretization of the equations of iteration is discussed, and some numerical results are given.  相似文献   

13.
I begin with a new short proof of: (I) LetP(t) inR d be a function oft havingn continuous derivatives foratx. ThenP(x)∈ convK, where $$K = \left\{ {\sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}} P^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}P^{(n)} (t),a \leqslant t \leqslant x} \right\}.$$ for applying (I) let bef(t) a real function such that the point ((t?a) n+1,f(t)) fulfills the conditions of (I). Then (I) gives a sharper estimate of then th remainder term off(x) than the Lagrange remainder formula. Iff( n )(t) is also convex inatx, thenf(x)∈[c,d], where $$\begin{gathered} c = \sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}f^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}f^{(n)} \left( {\frac{{na + x}}{{n + 1}}} \right)} , \hfill \\ d = \sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}f^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}} \frac{{nf^{(n)} (a) + f^{(n)} (x)}}{{n + 1}}. \hfill \\ \end{gathered} $$   相似文献   

14.
LetX, X i ,i≥1, be a sequence of independent and identically distributed ? d -valued random vectors. LetS o=0 and \(S_n = \sum\nolimits_{i = 1}^n {X_i } \) forn≤1. Furthermore letY, Y(α), α∈? d , be independent and identically distributed ?-valued random variables, which are independent of theX i . Let \(Z_n = \sum\nolimits_{i = 0}^n {Y(S_i )} \) . We will call (Z n ) arandom walk in random scenery. In this paper, we consider the law of the iterated logarithm for random walk in random scenery where deterministic normalizers are utilized. For example, we show that if (S n ) is simple, symmetric random walk in the plane,E[Y]=0 andE[Y 2]=1, then $$\mathop {\overline {\lim } }\limits_{n \to \infty } \frac{{Z_n }}{{\sqrt {2n\log (n)\log (\log (n))} }} = \sqrt {\frac{2}{\pi }} a.s.$$   相似文献   

15.
Letk n be the smallest constant such that for anyn-dimensional normed spaceX and any invertible linear operatorTL(X) we have $|\det (T)| \cdot ||T^{ - 1} || \le k_n |||T|^{n - 1} $ . LetA + be the Banach space of all analytic functionsf(z)=Σ k≥0 a kzk on the unit diskD with absolutely convergent Taylor series, and let ‖fA + k≥0κ|; define ? n on $\overline D ^n $ by $ \begin{array}{l} \varphi _n \left( {\lambda _1 ,...,\lambda _n } \right) \\ = inf\left\{ {\left\| f \right\|_{A + } - \left| {f\left( 0 \right)} \right|; f\left( z \right) = g\left( z \right)\prod\limits_{i = 1}^n {\left( {\lambda _1 - z} \right), } g \in A_ + , g\left( 0 \right) = 1 } \right\} \\ \end{array} $ . We show thatk n=sup {? n1,…, λ n ); (λ1,…, λ n )∈ $\overline D ^n $ }. Moreover, ifS is the left shift operator on the space ?∞:S(x 0,x 1, …,x p, …)=(x 1,…,x p,…) and if Jn(S) denotes the set of allS-invariantn-dimensional subspaces of ?∞ on whichS is invertible, we have $k_n = \sup \{ |\det (S|_E )|||(S|_E )^{ - 1} ||E \in J_n (S)\} $ . J. J. Schäffer (1970) proved thatk n≤√en and conjectured thatk n=2, forn≥2. In factk 3>2 and using the preceding results, we show that, up to a logarithmic factor,k n is of the order of √n whenn→+∞.  相似文献   

16.
This paper deals with the quality of approximative solutions for the Subset-Sum-Maximization-Problem maximize $$\sum\limits_{i = l}^n {a_i x_i } $$ subject to $$\sum\limits_{i = l}^n {a_i x_i } \leqslant b$$ wherea l,...,an,bεR+ andx l,...xnε{0,1}. produced by certain heuristics of a Greedy-type. Every heuristic under consideration realizes a feasible solution (x 1, ..., xn) whose objective value is less or equal the optimal value, which is of course not greater thanb. We use the gap between capacityb and realized value as an upper bound for the error made by the heuristic and as a criterion for quality. Under the stochastic model:a 1, ..., an, b independent,a 1...,an uniformly distributed on [0, 1], b uniformly distributed on [0,n] we derive the gap-distributions and the expected size of the gaps. The analyzed algorithms include four algorithms which can be done in linear time and four heuristics which require sorting, which means that they are done inO(nlnn) time.  相似文献   

17.
LetL be the space of rapidly decreasing smooth functions on ? andL * its dual space. Let (L 2)+ and (L 2)? be the spaces of test Brownian functionals and generalized Brownian functionals, respectively, on the white noise spaceL * with standard Gaussian measure. The Donsker delta functionδ(B(t)?x) is in (L 2)? and admits the series representation $$\delta (B(t) - x) = (2\pi t)^{ - 1/2} \exp ( - x^2 /2t)\sum\limits_{n = 0}^\infty {(n!2^n )^{ - 1} H_n (x/\sqrt {2t} )} \times H_n (B(t)/\sqrt {2t} )$$ , whereH n is the Hermite polynomial of degreen. It is shown that forφ in (L 2)+,g t(x)≡〈δ(B(t)?x), φ〉 is inL and the linear map takingφ intog t is continuous from (L 2)+ intoL. This implies that forf inL * is a generalized Brownian functional and admits the series representation $$f(B(t)) = (2\pi t)^{ - 1/2} \sum\limits_{n = 0}^\infty {(n!2^n )^{ - 1} \langle f,\xi _{n, t} \rangle } H_n (B(t)/\sqrt {2t} )$$ , whereξ n,t is the Hermite function of degreen with parametert. This series representation is used to prove the Ito lemma forf inL *, $$f(B(t)) = f(B(u)) + \int_u^t {\partial _s^ * } f'(B(s)) ds + (1/2)\int_u^t {f''} (B(s)) ds$$ , where? s * is the adjoint of \(\dot B(s)\) -differentiation operator? s .  相似文献   

18.
Letf be a uniformly continuous density function. LetW be a non-negative weight function which is continuous on its compact support [a, b] and ∫ a b W(x)dx=1. The complete convergence of $$\mathop {\sup }\limits_{ - \infty< s< \infty } \left| {\frac{1}{{nb\left( n \right)}}\sum\limits_{k - 1}^n {W\left( {\frac{{s - X_k }}{{b\left( n \right)}}} \right)} - f\left( s \right)} \right|$$ to zero is obtained under varying conditions on the bandwidthsb(n), support or moments off, and smoothness ofW. For example, one choice of the weight function for these results is Epanechnikov's optimal function andnb 2(n)>n δ for some δ>0. The uniform complete convergence of the mode estimate is also considered.  相似文献   

19.
Let (X, Λ) be a pair of random variables, where Λ is an Ω (a compact subset of the real line) valued random variable with the density functiong(Θ: α) andX is a real-valued random variable whose conditional probability function given Λ=Θ is P {X=x|Θ} withx=x 0, x1, …. Based onn independent observations ofX, x (n), we are to estimate the true (unknown) parameter vectorα=(α 1, α2, ...,αm) of the probability function ofX, Pα(X=∫ΩP{X=x|Θ}g(Θ:α)dΘ. A least squares estimator of α is any vector \(\hat \alpha \left( {X^{\left( n \right)} } \right)\) which minimizes $$n^{ - 1} \sum\limits_{i = 1}^n {\left( {P_\alpha \left( {x_i } \right) - fn\left( {x_i } \right)} \right)^2 } $$ wherex (n)=(x1, x2,…,x n) is a random sample ofX andf n(xi)=[number ofx i inx (n)]/n. It is shown that the least squares estimators exist as a unique solution of the normal equations for all sufficiently large sample size (n) and the Gauss-Newton iteration method of obtaining the estimator is numerically stable. The least squares estimators converge to the true values at the rate of \(O\left( {\sqrt {2\log \left( {{{\log n} \mathord{\left/ {\vphantom {{\log n} n}} \right. \kern-0em} n}} \right)} } \right)\) with probability one, and has the asymptotically normal distribution.  相似文献   

20.
LetF be a field. For eachk>1, letG be a finite group containing{x 1,...,x k }!×{y 1,...,y k}!. Then in the group algebraFG, $$co\dim _F \sum\limits_{j = 1}^{k - 1} {(1 + (x_j x_{j + 1} ))(1 + (y_j y_{j + 1} ))FG = \frac{{|G|}}{{2\pi i}}\oint\limits_{|z| = 1} {\frac{{dz}}{{J_0 (2\sqrt z )z^{k + 1} }}.} } $$ Connections with the theory of commutative Moufang loops are discussed, including a conjectured answer to Manin's problem of specifying the 3-rank of a finitely generated free commutative Moufang loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号