首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of solvent polarity on propylene polymerization catalyzed by the metallocenes in the presence of methylaluminoxane(MAO) and triisobutylaluminum(TIBA) was investigated in the toluene/CH2Cl2 mixed solvent. Changing the solvent polarity was found to influence the catalytic activity, polymer molecular weight and stereospecificity of the catalysts. The changes in the position of the substituents on the ligand caused the different responses of the catalyst to the changes in solvent polarity. The isotactic stereosequence of polypropylene was found to increase with the increase in the polarity of the reaction medium.  相似文献   

2.
Two unbridged metallocene catalysts, bis (2, 4, 7-trimethylindenyl)zirconium dichloride (met-I) and bis(2, 4, 6-trimethylindenyl) zirconium dichloride (met-II), which are different in the position o f substituents on the six-membered ringof the indenyl ligands were synthesized. The effect of substituents in the two metallocenes on the propylene polymerizationwas studied in the presence of methylaluminoxane (MAO) and triisobutylaluminium (TIBA). From the analysis ofmicrostructure determined by ~(13)C-NMR, it was demonstrated that the polymers produced by met-II have higher [mmmm]isotactic sequences than that of met-I. Using a mechanism based on model statistical analysis, it was found that chain-endmodel was dominant for met-I. However, met-II obeys the concurrent two-sites model during polymerization, which can beattributed to the existence of "racemic-like" conformer in its system.  相似文献   

3.
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008  相似文献   

4.
Solution structures of bis(phenoxy-imine) group 4 transition metal complexes (FI Catalysts) were investigated using 1H NMR spectroscopy. At least two isomers exist in equilibrium for FI Catalysts precursors, bis[N-(3-tert-butylsalicylidene)anilinato]zirconium(IV) dichloride ( 1 ), and bis[N-(3,5-dicumylsalicylidene)anilinato]zirconium(IV) dichloride ( 2 ), while bis[N-(3-tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato]titanium(IV) dichloride ( 3 ) exhibits only one isomer under the conditions examined. Upon activation with MAO, all FI Catalysts ( 1-3 ) generate two species at ambient temperature judging from some key signals in the 1H NMR. When temperature is raised (up to 75°C), one species ( 1a-3a ) converts irreversibly to the other species ( 1b-3b ). The resulting species, 1b-3b , are stereochemically rigid, in contrast to precursors 1 and 2 . Species 3b , derived from a living FI Catalyst, exhibited virtually no reactivity toward olefin insertion. The imine protons of species 1b-3b are temperature and solvent polarity sensitive. Two possibilities are proposed for the assignment of species 1b-3b, i) heterobinuclear complexes of group 4 metal and alkylaluminum with methyl and/or chlorine as bridging groups and ii) phenoxy-imine ligated aluminum complexes whose ligands are transferred from the group 4 metal. The latter is more probable from the separate synthesis of LAlMe2 (L: phenoxy-imine ligand). When 3 was activated with MAO in the presence of olefins, a new imine signal was observed. This species ( 3c for ethylene and 3d for propylene) is thermally more robust than 3a toward transformation to 3b and assignable to the living propagating species.  相似文献   

5.
Two new unbridged zirconocenes, bis(2,4,7-trimethyl indenyl)zirconium dichloride (Met-Ⅰ) andbis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-Ⅱ) were prepared in order to investigate thesteric effects of substituents on the nature of the catalysts for the polymerization of propylene. A mixture ofmethyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)_3] was used as cocatalyst to activate thesecatalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted inan increase of both activity and molecular weight as well as the isotacticity.  相似文献   

6.
The systematic syntheses of 1- and 2-substituted silylindenes, with a wide variety of substitution patterns on the silyl moiety, and their corresponding zirconocene dichlorides are presented. The rac- and meso-diastereomers of the 1-substituted zirconocene dichlorides can in most cases be separated. Instable zirconocenes were observed for certain substitution patterns. Two of the obtained zirconocene dichlorides, bis[2-(dimethylsilyl)indenyl]zirconium dichloride (4a) and bis[2-(trimethylsilyl)indenyl]zirconium dichloride (4b), were characterised by single crystal X-ray diffraction. On the basis of DFT results, the two compounds are geometrically similar, i.e. the additional methyl group on the silyl moiety only affects the conformational energy profile. Differences in their catalyst performance in the homopolymerisation studies with ethane are thus attributed to conformational control. For the remaining complexes, sterically less demanding silyl groups seem to be favoured with respect to the catalyst performance. All the 2-isomers have lower polymerisation activities than the unsubstituted bis[indenyl]zirconium dichloride/MAO system. Curiously, the rac-bis[1-(dimethylphenylsilyl)indenyl]zirconium dichloride/MAO system is found to be the most active catalyst in ethene homopolymerisations.  相似文献   

7.
Copolymerization of ethylene and poly(propylene) macromonomer(PPM) with Mn⇋710 was conducted with the (t-butylamido)dimethyl(tetramethyl-η5-cyclopentadienyl)silanetitanium dichloride(CGC-Ti), ethylenebis(tetrahydroindenyl)zirconium dichloride(Et[IndH4]2ZrCl2), bis(cyclopentadienyl)zirconium dichloride(Cp2ZrCl2) and bis(cyclopentadienyl)titanium dichloride(Cp2TiCl2) catalysts using methylaluminoxane as cocatalyst. From the detail analysis of resulting copolymers by DSC, IR and 13C NMR, it was proved that PPM is copolymerized with ethylene to give poly(ethylene-co-PPM). The ability of incorporating PPM in the copolymer was found to increase in the following order: Cp2ZrCl2 «Cp2TiCl2 < Et[IndH4]2ZrCl2 «CGC-Ti.  相似文献   

8.
Various group (IV) metal complexes, namely bis(cyclopentadienyl) titanium dichloride, bis(pentamethylcyclopentadienyl) titanium dichloride, cyclopentadienyl titanium trichloride, pentamethylcyclopentadienyl titanium trichloride, bis(cyclopentadienyl) zirconium dichloride, and bis(cyclopentadienyl) hafnium dichloride, were used as the catalysts for mediating styrene–butadiene–styrene hydrogenation. The catalytic efficiency of these catalysts was examined. The results show that catalyst activity strongly depends on the chemical structure of the metallocene complex. We also found that trialkylaluminum has a significant influence on the hydrogenation activity and thermal stability of metallocene catalysts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2141–2149  相似文献   

9.
A new unbridged metallocene catalyst bis(2,4-dimethyl-7-methoxyindenyl) zirconium dichloride was synthesized and polymerization of propylene was carried out with this catalyst and the results are compared with bis(2,4,7-trimethylindenyl) zirconium dichloride. The presence of π-donor substitutent on the indenyl ring led to a decrease in catalytic activity of the catalyst as well as the resulting molecular weight of the polymer as compared to its tri-alkyl substituted congener. The methoxy group deactivates the catalyst and also suppresses the favorable effect of other methyl substituents present in the indenyl ligand.  相似文献   

10.
An unbridged metallocene catalyst bis(2,4,6-trimethylindenyl)zirconium dichloride (Cat-I) was synthesized. Propylene polymerization was carried out with this catalyst and the results were compared with bis(2,4,7-trimethylindenyl)zirconium dichloride (Cat-II) to investigate the steric effects of substituents on the catalytic activity and microstructure of the resulting polymer. The differences of the methyl group position in Cat-I and Cat-II have apparent effect on the polymerization behavior. Comparable activity of the catalyst was observed at 0 and 25 °C polymerization temperature and the microstructure of the polymer was almost the same.  相似文献   

11.
富烯已被广泛应用于合成各种取代环戊二烯基、茚基和芴基金属配合物[1] .富烯的取代基对于它本身的反应性质以及由富烯所派生出的金属配合物的性质都起着重要的作用 .另外 ,富烯在手性配体及手性金属配合物的合成方面起着非常重要的作用 [2 ,3] ,仅就 6,6-二烷基富烯的加成反应而言 ,不但可以合成出多种烷基取代的手性金属配合物 [4 ] ,还可以引入杂原子而合成出手性配体 [5] .在研究 6-氨基富烯的加成反应时人们发现 ,由它不仅可以生成手性配体 ,而且其取代基上的氨基还可以与中心金属原子发生配位 [6 ] .最近 ,我们研究了 6-二甲氨基 - 6-…  相似文献   

12.
A series of chiral dizinc complexes of the type [(2,6-{ArN=C(Me)C5H3N}2C6H3O)Zn2(micro-Cl)Cl2] [Ar=2,6-i-Pr2C6H3 (), 2,6-Me2C6H3 (), 2,4,6-Me3-C6H2 (), 2,4-Me2C6H3 ()] can be conveniently prepared in good yield by the template reaction of 2,6-{O=C(Me)C5H3N}2C6H3OH with an excess of the corresponding aniline and two equivalents of zinc dichloride in n-BuOH at elevated temperature. Alternatively, the pro-ligands, 2,6-{(ArN=C(Me)C5H3N}2C6H3OH [Ar=2,6-i-Pr2C6H3 (L1-H), 2,6-Me2C6H3 (L2-H), 2,4,6-Me3C6H2 (L3-H), 2,4-Me2C6H3 (L4-H)], can be isolated and then treated with two equivalents of zinc dichloride to afford . Interaction of with two equivalents of NaOAc in the presence of TlBF4 gives the diacetate-bridged salt [(L1)Zn2(micro-OAc)2](BF4) () while with Nadbm (dbm=dibenzoylmethanato) the bis(dbm)-chelated salt [(L1)Zn2(dbm)2](BF4) () is obtained. Hydrolysis occurs on reaction of with TlOEt to furnish [(L1)Zn2(micro-OH)Cl2] () as the only isolable product. Conversely, reaction of with Tlhp (hp=2-pyridonate) affords the neutral bis(pyridonate)-bridged trimetallic complex [(L1)Zn3(micro-hp)2Cl3] () as the major product along with as the minor one. Complex and mixtures of / act as modest activators for the ring-opening polymerisation of epsilon-caprolactone. Single crystal X-ray diffraction studies have been performed on , , , , and reveal Zn...Zn separations in the range: 3.069(4)-4.649(6) A.  相似文献   

13.
Mathematical models are developed to describe the polymerization of ethylene and 1‐hexene with a constrained geometry catalyst (CGC‐Ti) and with bis(cyclopentadienyl)‐zirconium (IV) dichloride (Cp2ZrCl2). Particle swarm optimization is used to fit these models to homo‐ and copolymerization data. The models are also used to describe copolymerizations with mixtures of CGC‐Ti and Cp2ZrCl2 to make copolymers with inverse short chain branching distribution. Copolymer molecular weight and short chain branch distributions, as well as polymerization rates with the dual metallocene system, are measured to test whether they agreed with model predictions. The results show that the two metallocenes do not interact strongly when used as a mixture to make ethylene/1‐hexene copolymers.  相似文献   

14.
Ethene/1‐olefin blocky copolymers were obtained through nonliving insertion copolymerizations promoted by an isospecific single site catalyst. Propene or 4‐methyl‐1‐pentene were copolymerized with ethene with metallocenes endowed with different stereospecificity in propene polymerization: (i) aspecific “constrained geometry” half‐sandwich complex, {η15‐([tert‐butyl‐amido)dimethylsilyl](2,3,4,5‐tetramethyl‐1‐cyclopentadienyl)}titanium dichloride [Me2Si(Me4Cp)(NtBu)TiCl2] ( CG ), (ii) moderately isospecific rac‐ethylenebis(indenyl)zirconium dichloride [rac‐(EBI)ZrCl2] ( EBI ), (iii) slightly more isospecific hydrogenated homologue, rac‐ethylenebis(tetrahydroindenyl)zirconium dichloride [rac‐(EBTHI)ZrCl2] ( EBTHI ), (iv) highly iso‐specific rac‐[methylenebis(3‐tert‐butyl‐1‐indenyl)]zirconium dichloride [rac‐H2C‐(3‐tBuInd)2ZrCl2] ( TBI ), (v) most isospecific rac‐[isopropylidene‐bis(3‐tert‐butyl‐cyclopentadienyl)]zirconium dichloride [rac‐Me2C‐(3‐tBuCp)2ZrCl2] ( TBC ). Copolymerizations were described by a 2nd order Markovian copolymerization model and data are proposed to correlate the formation of 1‐olefin sequences with catalytic site isospecificity, made by the cooperation of organometallic complex and growing chain. Blocky copolymers were prepared over wide ranges of compositions: with any of the isospecific metallocenes when 4‐methyl‐1‐pentene was the 1‐olefin and only with the highly isospecific ones ( TBI , TBC ) when propene was the comonomer. A penultimate unit effect was observed with TBI as the metallocene, whereas a 1st order Markov model described the ethene/propene copolymerization from TBC . A moderately isospecific metallocene, such as EBI , is shown to be able to prepare blocky ethene copolymers with 4‐methyl‐1‐pentene. These results pave the way for the synthesis of new ethene based materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2063–2075, 2010  相似文献   

15.
The kinetics and sterochemical control of propylene polymerization initiated by rac-ethylene bis (4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride/methyl aluminoxane ( 1 /MAO) and by rac-ethylene bis (1-indenyl) zirconium dichloride/MAO ( 2 /MAO) were investigated. The polymerization activities increase monotonically with temperature corresponding to an overall activation energy of 10.6 kcal mol?1. This is accompanied, however, by reduction of stereochemical control as reflected in the amount of the polypropylene (PP) soluble in low boiling solvent. At a temperature of 30°C and higher, polymerization initiated by 1 /MAO produced no PP insoluble in refluxing n-heptane. Tritium radiolabeling showed that at [Al]/[Zr] ≥ 3500 and 30°C, two-thirds of 1 becomes catalytically active. There are at least two kinds of active species formed in about equal amounts; one has more stereoselectivity, 10–20 times greater rate constant of propagation, and a factor of 5–15 faster chain transfer to MAO than the second kind of Active species. This is also true at low [Al]/[Zr] of 350, except that the total amount of the two active species corresponds to only 13% of the [ 1 ]. Replacement of MAO with trimethyl aluminum resulted in the decrease of stereoselectivity and loss of catalytic activity proportional to the amount of replacement. A comparison was made with the polymers obtained with 2 /MAO.  相似文献   

16.
Copolymerization of ethylene or propylene and norbornene (NB) was carried out with stereospecific zirconocene catalysts rac‐ethylenebis(indenyl)zirconium dichloride, rac‐dimethylsilylenebis(indenyl)zirconium dichloride ( 2 ), rac‐dimethylsilylenebis(2‐methylindenyl)zirconium dichloride, and diphenylmethylene(cyclopentadienyl)(9‐fluorenyl)zirconium dichloride combined with cocatalysts at 40 °C. Temperature‐rising elution fractionation of the copolymers was carried out with cross‐fractionation chromatography with o‐dichlorobenzene as a solvent, and a broad distribution of the copolymer composition was detected. The fraction eluted at lower temperature contained higher NB. The effect of the polymerization time was examined in the ethylene–NB copolymerization with catalyst 2 , and the higher‐temperature elution fraction increased with increasing polymerization time. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 441–448, 2003  相似文献   

17.
The coupling of enantiomerically enriched 2,2′-dilithio-1,1′-binaphthyl with various annulated cyclopentenones or 2-indanone proves to be a facile route for the preparation of a series of annulated bis(cyclopentadienes) or bis(indenes) bridged at a symmetrical cyclopentadienyl position. The six- or seven-membered annulated bis(tetrahydroindene) 6 or bis(hexahydroazulene) 7 ligands could readily be converted to titanium or zirconium dichloride complexes. Owing to the symmetry of the ligands, only a single C2-symmetrical isomer of the metallocene dichloride could form. Although the faces of the cyclopentadienyl moieties are homotopic, the chiral bridge enforces a chiral conformation of the metallocene complexes. The bis(indenyl) 5 or five-membered annulated bis(tetrahydropentalene) 8 ligands could not be metalated. Unbridged 2-methyl and 2-phenyl substituted tetrahydropentalenes 27 and 28 were prepared and could readily be converted to titanium dichloride complexes.  相似文献   

18.
A microwave-assisted general method for the synthesis of 2-aminovinyl benzimidazoles has been developed.Treatment of the 1,2-phenylenediamines and N-arylated/N,N-dialkylated 3-aminoacroleins with bis(cyclopentadienyl)zirconium(IV) dichloride(Cp2Zr Cl2) as the catalyst under microwave irradiation for 3–5 min followed by in situ Mn O2 oxidation afforded thirteen 2-aminovinyl benzimidazoles in good yields.  相似文献   

19.
Ethene polymerization with bis(2-dimethylsilyl-indenyl)zirconium(IV) dichloride (1)/MAO and bis(2-trimethylsilyl-indenyl)zirconium(IV) dichloride (2)/MAO and ethene-co-1-hexene polymerization with 1/MAO are presented. The end group analysis of homopolymers reveals a pronounced dependence of the termination rate on temperature changes. In combination with the high molecular weights obtained, these results are in accord with theoretical predictions. Gel permeation chromatography, Fourier transform infrared, and 13C NMR analyses of copolymerization products from 1/MAO as a function of comonomer concentration at two different temperature series denote its tendency to form inhomogeneous polymer blends. Thermal analysis and fractionation results of one such blend indicate an inhomogeneity in the enchainment process and the existence of multiple active sites of differing geometry. These indications are further supported by AMBER force field and density functional theory studies of the catalyst precursors and the active site of 1/MAO. For this system, delta-agostic interactions for the stabilization of the zirconium cation are favored over beta-agostic interactions, which, in contrast to the situation in studies on bis-Cp systems, is a sparsely populated species. The gap in activation enthalphies for beta-hydride transfer and elimination is marginalized for these bulky zirconocenes, and conceptually new mechanisms for the isomerization of the vinyl end groups are discussed. Further, unexpected activation of the silicon-hydrogen bond within the ligand framework is observed with an activation enthalpy as low as 14 kcal/mol.  相似文献   

20.
SinceKaminskyeIal.discoveredthehighlyactivezirconocenedich1oride/methyl-aluminoxane(MAO)catalyticsystemforolefinpolymerization',intensiveresearchworkhasbeenfocusedondevelopingnewgroup4metal1ocenecatalystsforimprovingcatalystactivitiesandpolymerproperties"'.Inthedevelopmentofnewmetallocenecatalystsystems,liganddesignandmodificationhaveplayedanimportantrole.lthasbeenknownthatevenminormodificationofagivenligandframeworkcouldresultinsignificantchangesincatalystactivitiesandpolymerproperties'.Int…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号