首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Surface-based functional magnetic resonance imaging (fMRI) analysis is more sensitive and accurate than volume-based analysis for detecting neural activation. However, these advantages are less important in practical fMRI experiments with commonly used 1.5-T magnetic resonance devices because of the resolution gap between the echo planar imaging data and the cortical surface models. We expected high-resolution segmented partial brain echo planar imaging (EPI) data to overcome this problem, and the activation patterns of the high-resolution data could be different from the low-resolution data. For the practical applications of surface-based fMRI analysis using segmented EPI techniques, the effects of some important factors (e.g., activation patterns, registration and local distortions) should be intensively evaluated because the results of surface-based fMRI analyses could be influenced by them. In this study, we demonstrated the difference between activations detected from low-resolution EPI data, which were covering whole brain, and high-resolution segmented EPI data covering partial brain by volume- and surface-based analysis methods. First, we compared the activation maps of low- and high-resolution EPI datasets detected by volume- and surface-based analyses, with the spatial patterns of activation clusters, and analyzed the distributions of activations in occipital lobes. We also analyzed the high-resolution EPI data covering motor areas and fusiform gyri of human brain, and presented the differences of activations detected by volume- and surface-based methods.  相似文献   

3.
To evaluate the potential of magnetic resonance imaging (MRI) in detection and quantification of mitral regurgitation, 26 pts. with echocardiographically or angiographically documented mitral regurgitation were examined using a 0.5 Tesla superconducting magnet. In each patient a multislice-multiphase study in a sagittal-coronal double angulated projection (four-chamber view equivalent) was performed to assess left and right ventricular volumes, ejection fraction and regurgitant fraction. Additionally a blood flow sensitive cine-study (fast field echo: FFE) was done to visualize direction and area of regurgitant jet. MRI data were compared with quantitative and qualitative assessment of mitral regurgitation by angiography, 2D echocardiography, Doppler sonography and color flow mapping. Using the FFE mode MRI was able to detect the regurgitant jet as a typical signal loss within the left atrium in all patients. The ratio of regurgitant jet area/left atrium area as determined by MRI showed a correlation with a comparable ratio from color Doppler sonography of R = 0.87 (p < 0.001). There was also good agreement in semiquantitative grading of mitral regurgitation between MRI and angiography (R = 0.77, p < 0.001). The determination of left and right ventricular stroke volume allowed the calculation of the regurgitant fraction, which showed a correlation with invasively determined regurgitation fraction of R = 0.84 (p < 0.001). These data provide additional information that MRI may be useful as a noninvasive technique to detect and quantify mitral regurgitation.  相似文献   

4.
The basic concepts necessary to understand the physical basis of NMR imaging are presented in this didactic article. It is intended as a starting point for the radiologist or medical physicist who is addressing the topic of NMR for the first time. The basis of the NMR phenomena is described with introduction of the concepts of magnetic moment, magnetic fields, magnetic resonance, net magnetic moment of a sample, NMR excitation and NMR emission. The equipment necessary to observe these NMR properties of matter is summarized as well as the procedures for basic pulsed NMR experiments. The physical concepts for spatial localization of NMR emissions are introduced with physical analogies to stringed musical instruments. Several alternative imaging modalities are compared with greatest emphasis on the inversion recovery technique which yields images weighted by tissue T1 values. The six subsystems of an NMR imaging device (primary magnet, computer, radio equipment, magnetic gradient, data storage and display subsystems) are described in an overview fashion. The paper is followed by a series of study questions to test the reader's comprehension of basic NMR imaging concepts.  相似文献   

5.
Triple-negative breast cancer (TNBC), which characterized by distinct biological and clinical pathological features, has a worse prognosis because the lack of effective therapeutic targets. Breast MR is the most accurate imaging modality for diagnosis of breast cancer currently. MR imaging recognition could assist in diagnosis, pretreatment planning and prognosis evaluation of TNBC. MR findings of a larger solitary lesion, mass with smooth mass margin, high signal intensity on T2-weighted images and rim enhancement are typical MRI features associated with TNBC. Further work is necessary about the clinical application of dynamic contrast-enhanced MR imaging (DCE-MRI), DWI and MRS.  相似文献   

6.

Purpose

To optimize the navigator-gating technique for the acquisition of high-quality three-dimensional spoiled gradient-recalled echo (3D SPGR) images of the liver during free breathing.

Materials and methods

Ten healthy volunteers underwent 3D SPGR magnetic resonance imaging of the liver using a conventional navigator-gated 3D SPGR (cNAV-3D-SPGR) sequence or an enhanced navigator-gated 3D SPGR (eNAV-3D-SPGR) sequence. No exogenous contrast agent was used. A 20-ms wait period was inserted between the 3D SPGR acquisition component and navigator component of the eNAV-3D-SPGR sequence to allow T1 recovery. Visual evaluation and calculation of the signal-to-noise ratio were performed to compare image quality between the imaging techniques.

Result

The eNAV-3D-SPGR sequence provided better noise properties than the cNAV-3D-SPGR sequence visually and quantitatively. Navigator gating with an acceptance window of 2 mm effectively inhibited respiratory motion artifacts. The widening of the window to 6 mm shortened the acquisition time but increased motion artifacts, resulting in degradation of overall image quality. Neither slice tracking nor incorporation of short breath holding successfully compensated for the widening of the window.

Conclusion

The eNAV-3D-SPGR sequence with an acceptance window of 2 mm provides high-quality 3D SPGR images of the liver.  相似文献   

7.
High-resolution magnetic resonance imaging using dedicated high-field radiofrequency micro-coils at 16.4 T (700 MHz) was investigated. Specific solenoid coils primarily using silver and copper as conductors with enamel and polyurethane coatings were built to establish which coil configuration produces the best image. Image quality was quantified using signal-to-noise ratio and signal variation over regions of interest. Benchmarking was conducted using 5-mm diameter coils, as this size is comparable to an established coil of the same size. Our 1.4-mm-diameter coils were compared directly to each other, from which we deduce performance as a function of conductor material and coating. A variety of materials and conductor coatings allowed us to choose an optimal design, which we used to image a kidney section at 10-micron resolution. We applied zero-fill extrapolation to achieve 5-micron resolution.  相似文献   

8.
Water soluble FeOOH nanospindles with small size were synthesized by a simple hydrolysis method of inorganic salts and water bath treatment with different incubation time. The morphology, microstructure, magnetic resonance imaging (MRI) performance and cytotoxicity of the as-prepared FeOOH nanospindles were investigated, respectively. The results showed that the longitudinal length of FeOOH nanospindles was about 40-50 nm, and the incubation time had important effect for the morphology and production rate of FeOOH nanospindles. MRI test showed that the longitudinal and transverse relaxivities (r1 and r2 values) of FeOOH nanospindles were about 3.06 mM−1 s−1 and 5.06 mM−1 s−1, respectively. Furthermore, the experimental results of the Prussian Blue staining showed the clusters of FeOOH nanospindles in the cytoplasm of the labeled cells, and the cytotoxicity characterization indicated that FeOOH nanospindles have low cytotoxicity. Therefore, the as-prepared FeOOH nanospindles will have potential applications as T1- and T2-weighted MRI contrast agents.  相似文献   

9.

Background

Since the advent of magnetic resonance imaging, metal artifacts have posed an important diagnostic problem in different fields of medicine. However, this has not been systematically studied in patients undergoing surgery for brain tumors.

Objective

This study was planned to assess whether metal artifacts can occur in patients undergoing brain surgery without metallic implants.

Methods

Of 40 individuals who could be included because of having a pre- and postoperative MRI and a postoperative computed tomography (CT) scan or a conventional skull X-ray for the detection of metallic artifacts, 26 patients agreed to participate in this study and gave informed consent.

Results

Twenty-six subjects, 12 males and 14 females, with an age range of 12 to 54 years, were included in the study. Four patients were found to have gross metal particles in their postoperative brain CTs and were excluded. Of the remaining 22 subjects, 7 patients (31.8%) had metallic artifacts.

Conclusion

Our study showed that simple bone drilling or chiseling during surgical manipulation of skull bones may result in separation of very tiny metal particles which can remain in the surgical site and cause artifacts in postoperative MRIs. This finding appeared to be independent of factors such as age, sex, tumor/incision site, tumor size, pathologic tumor type, total radiation dose, operation–MRI time interval and sequence of MRI.  相似文献   

10.
11.

Purpose

Lesions close to the internal craniocervical ligaments are a common problem in patients with whiplash injuries. The aim of this study was to evaluate the morphology and visibility of these ligamentous structures with a new isotropic three-dimensional (3D) turbo-spin-echo (TSE) technique.

Materials and Methods

MR (MR) images of the cervical spine of 52 healthy subjects (27 women and 25 men; mean age=29 years; age range=18–40 years) were taken with a T2-weighted 3D TSE sequence with variable flip-angle distribution [SPACE (Sampling Perfection with Application optimized Contrasts using different flip-angle Evolution)] at 1.5 T (Magnetom Avanto, Siemens Erlangen, Germany). Two experienced musculoskeletal radiologists read the images independently on a 3D imaging and postprocessing workstation. The visibility and morphology of the alar ligaments were evaluated on a five-point scale, and inter-reader correlation was assessed with kappa statistics.

Results

Both alar ligaments were detected in all subjects. Twenty-eight (53.8%) of the alar ligaments could not be seen within one slice of the standard coronal imaging plane but could adequately be visualized in an oblique reconstruction adapted to the orientation of the ligaments on the axial slices. Inter-reader correlation for visibility on MR imaging (MRI) of the internal craniocervical ligaments was high (left+right side, kappa=0.95). Most (94%) alar ligaments presented symmetrically. In the axial plane, 60% were oriented neutral and 40% had a backward orientation. In the coronal plane, 67% were oriented caudocranially and 33% were oriented horizontally. The shape of the ligaments was parallel in half and was V-shaped in the other half. The alar ligaments had homogeneous low-signal intensity in 56% and heterogeneous low-signal intensity in 44%. The apical ligament of the dens was seen (excellent–good–moderate) in 61% (reader 1) and 52% (reader 2). The tectorial membranes and the transverse ligament of the atlas were shown (excellent–good) in all subjects.

Conclusions

MRI with acquisition of an isotropic SPACE technique allows high-resolution imaging of the craniocervical ligaments in all orientations. Reconstruction of the image data in the variable orientation of the alar ligaments allowed for excellent depiction within one slice such that partial volume artifacts that hamper image analysis can be eliminated.  相似文献   

12.
1H Magnetic resonance imaging and 31P magnetic resonance spectroscopy (MRS) have been carried out in experimental rodent filariasis, i.e., Acanthocheilonema viteae infection in the rodent host, Mastomys coucha. The T2-weighted image of the infected host shows fine hyperintense thread like structures of adult filariid nests in the cervical region. 31P MRS of normal and infected hosts, localized over the same region of interest, show seven major peaks corresponding to phosphomonoesters (including glucose-6-phosphate, fructose-6-phosphate, fructose-1-6-diphosphate, phosphorylcholine, and adenine monophosphate or AMP), inorganic phosphate, glycerophosphorylcholine, phosphoenolpyruvate, phosphocreatine and nucleoside di- and tri-phosphates. Concentrations of phosphomonoesters (PMEs) are higher in the normal rodent compared with the infected ones. In vivo 31P MRS provides a non-invasive assessment of tissue bioenergetics and phospholipid metabolism.  相似文献   

13.
The aims of this study were to investigate the applicability of Fourier fitting in the magnetic resonance (MR) evaluation of left ventricular (LV) function and to determine the optimal number of harmonics for fitting. Cine cardiac MR imaging was performed in 10 subjects, and an LV time–volume curve was generated. Fourier fitting was applied to the original curve using 1–10 harmonics, and the qualities of the time–volume curve and first-derivative curve were evaluated. LV functional parameters were calculated from curves generated with and without fitting. The quality of the original time–volume curve was good, and Fourier fitting had no substantial effect on functional parameters obtained directly from the time–volume curve such as ejection fraction. The first-derivative curve generated without fitting showed substantial artificial fluctuation. The application of Fourier fitting depressed the fluctuation and tended to decrease estimates of peak ejection rate and peak filling rate. Five or six harmonics appeared to be appropriate for obtaining a high-quality first-derivative curve. In conclusion, Fourier fitting was indicated to aid in reducing the artificial fluctuation of the first-derivative curve generated from cine cardiac MR imaging and to contribute to the evaluation of functional parameters derived from the first-derivative curve.  相似文献   

14.
As one of the key characteristic components that result from sulfur hexafluoride (SF6) decomposition in SF6 gas-insulated equipment, hydrogen sulfide (H2S) can reflect the severity of the internal insulation faults and indicate whether or not such faults involve solid insulation material effectively. The decomposition of SF6 and its reaction with other impurities to form H2S are simulated in this study via Materials Studio. The simulation verifies that H2S is generated only when serious faults occur in the equipment; thus, the online monitoring of the trace H2S is highly necessary. To achieve a high detection accuracy and avoid cross interference, the spectral line R (8) of the H2S ν1 + ν2 + ν3 co-frequency absorption band is taken as the absorption line for the gas detection by online simulation based on the HITRAN on the Web. In addition, this study develops a cantilever-enhanced photoacoustic spectrometry trace gas detection platform and conducts experimental research on the quantitative detection of trace H2S/SF6 and H2S/N2. Experimental results show that the detection sensitivity of the detection platform to trace H2S under the background gas N2 and SF6 is 0.84 and 1.75 μL/L, respectively, and a strong linear relationship exists between the trace H2S concentration and its corresponding PA signal. Moreover, based on both the theoretical simulation and experiment, the influence of temperature and pressure on the detection platform is discussed and analyzed. The results indicate that the change in the PA signal amplitude decreases with an increase in the pressure or temperature of the PA cell, and the detection platform is more sensitive to pressure.  相似文献   

15.
An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Noninvasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to microstructural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 h following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea, when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods.  相似文献   

16.
Monodispersed amphiphilic FePt nanoparticles with the diameter of about 4 nm were synthesized by high temperature pyrolysis of iron(III) acetylacetonate and platinum(II) acetylacetonate. Their amphiphilicity is contributed to the tetraethylene glycol (TEG) and oleic acid (OA) on the surface, which is confirmed by FTIR and XPS spectra. They provide a superparamagnetic property with the saturation magnetization (Ms) of about 25 emu/g and the transverse relaxivity (r2) of about 122.6 mM−1 s−1 in aqueous solutions. Furthermore, FePt nanoparticles show low cytotoxicity in living cells. They can be uptaken by HeLa cells effectively and result in the obvious decrease of T2 relaxation time after internalization.  相似文献   

17.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.  相似文献   

18.
Optimizing tissue contrast in magnetic resonance imaging   总被引:1,自引:1,他引:0  
Magnetic resonance imaging demands that tissue contrast and signal-to-noise advantages be sought in each component of the imaging system. One component of magnetic resonance imaging in which contrast and signal-to-noise ratios are easily manipulated is in the choice of pulse sequences and interpulse delay times. This article provides a general method for determining the best choices of interpulse delay times in pulse sequences and applies that method to saturation recovery, inversion recovery, and spin-echo sequences. Saturation recovery and inversion recovery sequences with rephasing pulses, and tissues with unequal hydrogen densities are considered. Optimization of pulse sequences is carried out for the two distinct cases of (a) a fixed number of sequence repetitions and (b) a fixed total imaging time. Analytic expressions are derived or approximate expressions are provided for the interpulse delay times that optimize contrast-to-noise ratios in each pulse sequence. The acceptable range of interpulse delay times to obtain reasonable contrast using each pulse sequence is discussed.  相似文献   

19.
Electric (E) fields induced near metal implants by MRI switched-gradient magnetic fields are calculated by a new equivalent-circuit numerical technique. Induced E-field results are found for a metallic spinal-fusion implant consisting of two thin wires connected to the metallic case of a current generator as well as for its subsections: a bare U-shaped wire, an insulated U-shaped wire, a cut insulated wire, and a generator. The presence of the metallic implants perturbs the E field significantly. Near the ends of the bare U-shaped wire, the E field is 89.7 times larger than in the absence of the wire. The greatest E field concentration occurs near the ends of the cut insulated wire, where the E field is 196.7 times greater than in the absence of the wire. In all cases, the perturbation of the induced E field by the implanted wire is highly localized within a few diameters of the wire.  相似文献   

20.
Intraoperative magnetic resonance imaging (iMRI) has gained importance in the treatment of gliomas and sellar tumors. In intracranial meningiomas, the extent of surgical tumor removal is one of the most important factors in the prevention of tumor recurrence and patient survival. Complex meningiomas located at the skull base or near eloquent brain regions show higher recurrence rates, morbidity and mortality. The aim of this study was to evaluate whether iMRI contributes to more extensive surgical resection in these tumors. Patients undergoing complex meningioma resection using iMRI from January 2007 to January 2011 were included in this study. The indication for iMRI-guided tumor resection included patients presenting with meningiomas located in the skull base or compressing eloquent brain areas in whom a radical resection was considered to be difficult. Intraoperative 0.15-T MRI scan (PoleStar; Medtronic Navigation, Louisville, CO, USA) was performed before and after maximal possible resection using standard microsurgical and neuronavigation techniques. All patients underwent fluorescence-guided resection. The following data were analyzed: tumor localization, histological grade, Simpson resection grade, duration of the procedure, iMRI scan time, iMRI findings, resection extent based on postresection iMRI, hospitalization time, surgical complications and outcome, and MRI follow-up 2–27 months postoperation. Twenty-seven consecutive patients undergoing complex meningioma resection using iMRI were included. In this series, only one patient (3.4%) underwent resection of tumor remnant after iMRI, although without improvement of the Simpson resection grade. Temporary neurologic deficits were found in 8 patients (27.6%) postoperatively, whereas 11 patients (37.9%) had permanent postoperative neurologic deficits. In one case (3.4%), fatal postoperative bleeding occurred which was not detected by iMRI. Our results show that iMRI has no influence on intraoperative strategy in terms of resection grade or detection of early postoperative complications. The benefits of iMRI in complex meningioma surgery are therefore doubtful; however, it may still prove to be effective in certain subsets of complex meningiomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号