首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The needle trap device (NTD) is an extraction trap that contains a sorbent inside a small needle, through which fluid can be actively drawn into and out of by a gas-tight syringe or pump, or analytes can be introduced passively to the trap by diffusion. The needle trap (NT) is a potentially solventless sampling technique/sample preparation and introduction device. Both fluid-borne analytes and particles can be trapped inside the needle and then adsorbed analytes are desorbed in an inlet of analytical instrument and introduced for identification and quantification. The fluid may be either gaseous or liquid. The objectives of this critical review are to summarize the theory of the sampling process for both active and passive time-average extraction modes in addition to outlining the evolution of the technology and main applications.  相似文献   

2.
With compiled and analyzed information about recent advances in passive sampling techniques for sediment porewater, we discuss common quantitation methods (equilibrium and kinetic diffusion-controlled sampling), effects of temperature and salinity on passive sampling, and benefits and drawbacks of currently available passive samplers based on the principles of solid-phase microextraction.The results show that the in-fiber standardization technique, which is kinetic diffusion-controlled, could shorten sampling time and obtain accurate results using isotopically-labeled reference compounds. Another quantitative method, time-weighted average sampling, may be viable for simultaneously measuring all analytes in sediment porewater, as it is more effective with respect to cost and time. In addition, the effects of temperature and salinity on passive sampling should be quantified in field applications.Currently available passive samplers (e.g., employing polymer-coated fibers and low-density polyethylene sheets) can sense hydrophobic organic chemicals (HOCs) in sediment porewater, but the small capacity and the inflexibility of polymer-coated fibers need to be further improved, while better physical protection of polyethylene devices, particularly when they are deployed under rough conditions, should be carefully considered.In conclusion, passive samplers for in-situ measurement of dissolved HOCs in sediment porewater should be combined with a suitable quantitative method and calibration for the effects of temperature and salinity.  相似文献   

3.
A new miniaturized kit based on very young supersensitive tobacco Bel-W3 plantlets, which can be easily used to detect phytotoxic levels of ozone in ambient air in large scale surveys, is described. It has been developed in laboratory as well as field studies. The optimal sampling time is 5–7 d. The advantages of the kit are its user-friendliness, low cost, and reliability. The kit may be integrated by a passive sampling tube set and may be also proposed for educational programs.  相似文献   

4.
Ouyang G  Pawliszyn J 《Journal of chromatography. A》2007,1168(1-2):226-35; discussion 225
Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.  相似文献   

5.
The presence of estrogens in the aquatic environment has been the target of several studies in the last decade. Newly developed passive sampling techniques for polar organic chemicals show great promise for the assessment of long-time exposure of aquatic organisms to emerging contaminants. In the present work, two configurations of the Chemcatcher® passive sampler have been tested for their applicability to the analysis of seven estrogens in water. Accumulation experiments in the laboratory, to calculate the uptake rates, and a field trial show that the polar configuration of this device may be used for the efficient sampling and determination of estrogens in water. Time weighted average concentrations were determined in the field trial and compared with spot sampling concentrations. The detection of estriol using passive sampling, although not found with spot sampling, clearly demonstrates the value of this technique in assessing relevant concentrations of estrogens in the aquatic media.  相似文献   

6.
Advances in passive sampling in environmental studies   总被引:2,自引:0,他引:2  
Passive sampling is based on the phenomenon of mass transport due to the difference between chemical potentials of analytes in a given environmental compartment and the collection medium inside a dosimeter. The subsequent laboratory procedure (i.e. extraction, identification and determination of analytes) is the same as in the case of classic sampling techniques.Passive sampling techniques are characterized by simplicity with regard to the dosimeter's construction as well as its maintenance. Therefore, they find ever increasing application in the field of environmental research and analytics. When choosing a passive sampling method, one should not forget that some passive samplers require the time-consuming calibration step before being used in the field.Novel solutions and modifications of existing sampler designs have been presented. Practical application of passive dosimetry in environmental analytics, including sampling of water, soil, air and other atypical media are discussed. Some aspects of calibration methods in passive dosimetry are also described. The latest trends in the application of passive sampling are highlighted.  相似文献   

7.
The HAPSITE® (Hazardous Air Pollutants on Site) is a portable gas chromatography-mass spectrometry (GC–MS) unit designed to aid air sampling technicians by identifying and quantifying volatile organic compounds from occupational and environmental sampling. The main goal of the present study was to extend prior laboratory-based work with the portable HAPSITE® ER (extended range model) thermal desorption (TD) capability to real-world field samples from both indoor and outdoor environments using different types of active and passive sampling mechanisms. Understanding the performance of the HAPSITE® ER in a realistic field setting will allow air quality sampling technicians to make improved decisions related to sampling and analysis methods in the field. An important finding was that certain charcoal-based TD sorbents were contraindicated for the HAPSITE® ER because of a substantial hydrocarbon bleed which degraded system performance. A novel time series TD sampler (Logistically Enabled Sampling System-Portable [LESS-P]) was validated using Tenax TA TD tubes against standard active sampling across multiple field sampling sites, and the qualitative analytical trends and compound identities were similar between LESS-P replicates analysed via benchtop GC–MS and HAPSITE® ER. Once validated, the LESS-P was used to determine the reference concentrations for passive sampling calculations. The results confirmed the passive sampling methodology within the benchtop system, but highlighted some systemic sensitivity limitations that must be addressed in order for the HAPSITE® to be accurately applied to passive sampling. We propose that the LESS-P time-series sampler may help to alleviate the requirement for sampling technicians to be on-site during active sampling, allowing for automated sampling throughout the duration of a sampling event.  相似文献   

8.
Passive sampling relies on the uptake of contaminants into appropriate sampling devices along a diffusion gradient without using pumps or bailers. Thus, for example, in groundwater sampling, changes to flow due to pumping can be avoided. If the diffusion gradient can be maintained for extended periods, contaminants can be sampled continuously over time without any action, allowing to determine time-weighted average contaminant concentrations. We here show that the Ceramic Dosimeter, a solid receiving phase passive sampler using a ceramic membrane as sorbent container and diffusion barrier, can be used without calibration for the long-term monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater.  相似文献   

9.
《Analytical letters》2012,45(4):429-438
Abstract

The parameters affecting the sampling on passive samplers made of graphitized carbon black, an adsorbent with a low specific area, are investigated.

It has been shown that a reverse diffusion might occur, this effect being more noticeable for volatile compounds. Also, the presence of organics in large concentration may affect the sampling of components in small concentration due to a deactivation of the adsorbent. These limitations are counterbalanced if the passive samplers have a suitable geometry and contain a sufficient amount of adsorbent.  相似文献   

10.
The investigation of air pollution is a highly important field of research. Air quality in a vehicle’s interior has attracted growing attention since people spend much of their time in vehicles and those frequently travelling in new cars are exposed to harmful compounds. The main air pollutants inside new vehicles are volatile organic compounds (VOCs), present as a result of interior materials’ de-gassing. Among the sampling methods used in indoor air quality research, active sampling for VOCs collection is one method that has been extensively described and applied. The present study sought to implement passive sampling with Radiello® samplers to collect air samples directly in the car factory. The results from passive sampling were compared with results derived from active sampling using Carbograph 1TD and silicagel coated with 2,4-dinitrophenylhydrazine cartridges, based on previously validated methods. The identification and quantification of organic compounds was performed using gas chromatography with flame ionisation coupled with a mass spectrometer after thermal desorption. Aldehydes were determined by means of high-performance liquid chromatography. In the present study, the results obtained with the use of active and passive methods of air sampling were compared, correlations between the two sampling methods were designated and the repeatability of passive sampling was detailed.  相似文献   

11.
We examined the performance of the Chemcatcher (University Portsmouth, UK) in two different configurations when used for the aquatic passive sampling of a 1-day pulse contamination with thiacloprid under field-relevant conditions. The configuration without diffusion-limiting membrane led to biofouling of the Empore disk receiving phase resulting in a fourfold reduction in analyte uptake compared to unfouled passive samplers. The sampling rate for the configuration with diffusion-limiting polyethersulfone membrane was also much lower than in a long-term exposure scenario, although no biofouling occurred. Both configurations of the Chemcatcher exhibited high variation in analyte uptake with up to 100% RSD. Short-term contamination events may be underestimated in passive sampling when the receiving phase is biofouled or a diffusion-limiting membrane is employed.  相似文献   

12.
Elucidating the availability of the bound analytes for the mass transfer through the diffusion boundary layers (DBLs) adjacent to passive samplers is important for understanding the passive sampling kinetics in complex samples, in which the lability factor of the bound analyte in the DBL is an important parameter. In this study, the mathematical expression of lability factor was deduced by assuming a pseudo-steady state during passive sampling, and the equation indicated that the lability factor was equal to the ratio of normalized concentration gradients between the bound and free analytes. Through the introduction of the mathematical expression of lability factor, the modified effective average diffusion coefficient was proven to be more suitable for describing the passive sampling kinetics in the presence of mobile binding matrixes. Thereafter, the lability factors of the bound polycyclic aromatic hydrocarbons (PAHs) with sodium dodecylsulphate (SDS) micelles as the binding matrixes were figured out according to the improved theory. The lability factors were observed to decrease with larger binding ratios and smaller micelle sizes, and were successfully used to predict the mass transfer efficiencies of PAHs through DBLs. This study would promote the understanding of the availability of bound analytes for passive sampling based on the theoretical improvements and experimental assessments.  相似文献   

13.
The presence of polar pesticides in environmental waters is a growing problem. After application their migration into the aqueous phase is promoted by their high water solubility. Transport processes are usually complex and inputs are generally stochastic; this makes monitoring of this class of pesticides challenging using low volume spot samples of water. Recently there has been a trend to use passive samplers to monitor pesticides in river catchments as it is an in-situ time integrative sampling technique. The three main types of device used for this purpose are, Chemcatcher®, POCIS and o-DGT. This article reviews the fate and current state-of-the-art for monitoring polar pesticides in aqueous matrices. Principles and the theory of passive sampling and strategies for passive sampler design and operation are presented. Advances in the application of passive sampling devices for measuring polar pesticides are extensively critiqued; future trends in their use are also discussed.  相似文献   

14.
微囊藻毒素是常见的蓝藻毒素,具有很强的肝脏神经系统和肾脏毒性. 由于水的富营养化,蓝藻会爆发产生大量的微囊藻毒素,进而对水生生物和食用它们的人类构成巨大威胁. 随着浓缩、富集、分离方法和仪器技术的进步,定量分析微囊藻毒素的方法也在不断进步,且应用越来越广泛. 综述了水、沉积物和生物中微囊藻毒素的富集和检测方法,结果显示:目前常见的采样方法是主动采样法,开发简便可靠和实用的被动采样方法是急需的研究方向之一. 衍生化方法可以降低基质效应,有利于使用不同的检测方法和试验观察,因此开发一种高效、灵敏的衍生化方法检测微囊藻毒素将是重要的研究方向之一.  相似文献   

15.
The current state-of-the-art of passive sampling and/or extraction methods for long-term monitoring of pollutants in different environmental compartments is discussed in this review. Passive dosimeters that have been successfully used to monitor organic and inorganic contaminants in air, water, sediments, and soil are presented. The application of new approaches to the determination of pollutants at the sampling stage is discussed. The main milestones in the development of passive techniques for sampling and/or extraction of analytes, and in biomonitors used in environmental analysis, are summarized in this review. Passive samplers and biomonitors are compared.  相似文献   

16.
The development and operational evaluation of a calibration gas generator for the analysis of volatile or ganic compounds (VOC) in air is described. Details of the construction, as well as of the evaluation of the apparatus are presented here. The performance of the test gas generator is validated both by on-line GC analysis of the calibration gas produced and by off-line analysis of adsorptive samples taken from the generated calibration gas. Both, active and passive sampling have been used, and the results demonstrate the excellent accuracy and precision of the generated test gas atmosphere: For the 11 investigated organic compounds (aromatic and halogenated compounds), the found values were in most cases within 5% of the target value with a reproducibility of better than 3% RSD (as determined by the analysis of the sampled adsorbent tubes). Custom made adsorbent tubes were used for active and passive sampling and in both cases were analysed by thermal-desorption GC. Particularly the combination of passive sampling and thermodesorption-GC analysis offers significant advantages over the commonly used active sampling on activated charcoal, followed by CS2 desorption in terms of avoidance of hazardous solvents, potential for automation and improved detection limits. Both sampling techniques are capable for monitoring VOCs at concentrations and under conditions relevant for workplace monitoring.  相似文献   

17.
Nonuniform ac (alternating current) electric fields created by microelectrodes are investigated for their influence on the transport of the vesicular stomatitis virus (VSV) from aqueous suspensions of physiological ionic strength to surfaces on which the VSV is captured. Whereas passive diffusion did not lead to detectable levels of virus captured on a surface when using titers of VSV as high as 107 PFU/mL, nonuniform electric field-mediated transport led to the detection of 105 PFU/mL of virus in 2 min. An order-of-magnitude analysis of the time scales associated with virus transport to the microelectrodes inside media of physiological relevance indicates that electrothermal fluid flow (and the resulting viscous drag forces on the virus) rather than dielectrophoresis likely constitutes the major mechanism for virus transport far from the electrodes. The influence of dielectrophoresis was calculated to be confined to a region within a few micrometers of the electrodes and to lead to collection patterns of both virus and fluorescently labeled particles near the electrodes that were found to be in qualitative agreement with experiments. These observations and conclusions are discussed within a theoretical framework presented in the paper. The results presented in this work, when combined, suggest that ac electrokinetic phenomena can be used to expeditiously transport and capture viruses onto surfaces from solutions of high ionic strength, thus providing a potentially useful approach to addressing a bottleneck in the development of devices that allow for rapid sampling and detection of infectious biological agents.  相似文献   

18.
李慧珍  游静 《色谱》2013,31(7):620-625
综述了被动采样技术作为仿生萃取方法在测定沉积物中有机污染物的生物可利用性和毒性中的应用。对比了半渗透膜装置、聚乙烯膜装置、聚甲醛树脂萃取和固相微萃取这些常见被动采样技术在使用过程中的优缺点,并针对被动采样技术应用中的问题,提出可能的解决手段和研究需求。  相似文献   

19.
The purpose of the Water Framework Directive is to ensure the quality of the natural water across Europe. In this context, passive samplers have shown interesting capacities for the monitoring of contaminants in aqueous ecosystems. They allow the measurement of time-weighted average concentrations, overcoming many drawbacks of the spot-sampling techniques known to be expensive and time consuming. However, application of passive samplers such as polar organic chemical integrative samplers (POCIS) for the monitoring of hydrophilic contaminants requires calibration to define compound sampling rates; key parameters to deduce the pollutant water concentrations from the amounts of pollutants accumulated by the device. Unfortunately, sampling rates are influenced by a range of environmental factors; in that respect, a question remains: is it not evident to know to what extent the sampling rates obtained in laboratory experiments can be used in field conditions? The problem can be solved for hydrophobic samplers by using performance reference compounds (PRCs), and an ongoing challenge for POCIS is focused on the improvement of the quantitative aspect of this family of samplers. In this study, potential PRCs have been selected during a specific experiment and their performance was tested in the laboratory under two hydrodynamic conditions. Results revealed a good proportionality between elimination rates of PRCs and sampling rates of chemicals. Afterwards, the application of the approach under environmental conditions was assessed by deploying POCIS in the Arcachon Bay (France) where POCIS–PRC-derived water concentrations appear to be close to the simultaneous grab-sampling results.
Figure
Relationship between Irgarol sampling rate and DIA elimination rate  相似文献   

20.
A diffusive sampling device is described that is capable of reliable measurements of formaldehyde and total oxidants (Ox = ozone + nitrogen dioxide) at sub-ppbv concentration levels in ambient air. These species are collected on silica gel particles coated with 1-methyl-1-(2,4-dinitrophenyl)hydrazine (MDNPH) and phosphoric acid. The formaldehyde hydrazone (HCHO-MDNPh) and the N-methyl-2,4-dinitroaniline (MDNA) formed are extracted with acetonitrile and determined by HPLC with UV detection at 365ánm. The measured sampling rate for HCHO, 15.0 mLmin-1, agrees well with the theoretical value of 16.0, whilst an experimental sampling rate of 10.7 mLmin-1 (25% lower than the calculated one) is observed for Ox. The sampling rates seem to be independent of the sampling duration up to one month. The precision of the measurements for co-located passive samplers averaged is 7.3% for HCHO and 7.2% for Ox in urban air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号