首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical study of alcohol oxidation by ferrate   总被引:2,自引:0,他引:2  
The conversion of methanol to formaldehyde mediated by ferrate (FeO(4)2-), monoprotonated ferrate (HFeO4-), and diprotonated ferrate (H2FeO4) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the O-H and C-H bonds of methanol via two entrance reaction channels: (1) an addition-elimination mechanism that involves coordination of methanol to diprotonated ferrate; (2) a direct abstraction mechanism that involves H atom abstraction from the O-H or C-H bond of methanol. Within the framework of the polarizable continuum model (PCM), the energetic profiles of these reaction mechanisms in aqueous solution are calculated and investigated. In the addition-elimination mechanism, the O-H and C-H bonds of ligating methanol are cleaved by an oxo or hydroxo ligand, and therefore the way to the formation of formaldehyde is branched into four reaction pathways. The most favorable reaction pathway in the addition-elimination mechanism is initiated by an O-H cleavage via a four-centered transition state that leads to intermediate containing an Fe-O bond, followed by a C-H cleavage via a five-centered transition state to lead to formaldehyde complex. In the direct abstraction mechanism, the oxidation reaction can be initiated by a direct H atom abstraction from either the O-H or C-H bond, and it is branched into three pathways for the formation of formaldehyde. The most favorable reaction pathway in the direct abstraction mechanism is initiated by C-H activation that leads to organometallic intermediate containing an Fe-C bond, followed by a concerted H atom transfer from the OH group of methanol to an oxo ligand of ferrate. The first steps in both mechanisms are all competitive in energy, but due to the significant energetical stability of the organometallic intermediate, the most likely initial reaction in methanol oxidation by ferrate is the direct C-H bond cleavage.  相似文献   

2.
The conversion of adamantane to adamantanols mediated by ferrate (FeO(4)(2)(-)), monoprotonated ferrate (HFeO(4)(-)), and diprotonated ferrate (H(2)FeO(4)) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the C-H bonds of adamantane via two reaction pathways, in which 1-adamantanol is formed by the abstraction of a tertiary hydrogen atom (3 degrees ) and 2-adamantanol by the abstraction of a secondary hydrogen atom (2 degrees ). Each reaction pathway is initiated by a C-H bond cleavage via an H-atom abstraction that leads to a radical intermediate, followed by a C-O bond formation via an oxygen rebound step to lead to an adamantanol complex. The activation energies for the C-H cleavage step are 6.9 kcal/mol in the 1-adamantanol pathway and 8.4 kcal/mol in the 2-adamantanol pathway, respectively, at the B3LYP/6-311++G level of theory, whereas those of the second reaction step corresponding to the rebound step are relatively small. Thus, the rate-determining step in the two pathways is the C-H bond dissociation step, which is relevant to the regioselectivity for adamantane hydroxylation. The relative rate constant (3 degrees )/(2 degrees ) for the competing H-atom abstraction reactions is calculated to be 9.30 at 75 degrees C, which is fully consistent with an experimental value of 10.1.  相似文献   

3.
 The structures and the conformational energies of nonprotonated, monoprotonated and diprotonated 1,2-ethanediamine have been investigated through density functional theory. The relative performance of local and gradient-corrected functionals is discussed. The existence of hydrogen-bond formation has been determined with electron localisation function calculations. Proton affinities for nonprotonated and monoprotonated 1,2-ethanediamine have been calculated and are in agreement with experimental data. The influence of solvation has been accounted for through the self-consistent isodensity polarisable continuum model. The results for the nonprotonated conformers show that solvation stabilises those conformers which have the lone pair in an antiperiplanar conformation. Solvation of the monoprotonated conformer stabilises significantly the “anti” conformation, which is unstable in the gas phase. For the di-protonated species, solvation stabilises slightly the gauche conformer, which is unstable in the gas phase. Received: 28 September 1999 / Accepted: 2 May 2000 / Published online: 27 September 2000  相似文献   

4.
We study the electronic density charge topology of CH(5)(+) species 1 (C(s)()), 2 (C(s)()), and 3 (C(2)(v)) at ab initio level using the theory of atoms in molecules developed by Bader. Despite the reports of previous studies concerning carbocationic species, the methane molecule is protonated at the carbon atom, which clearly shows its pentacoordination. In addition to the fact that hydrogen atoms in the methonium molecule behave in a very fluxional fashion and that the energy difference among the species 1, 2, and 3 are very low, is important to point out that two different topological situations can be defined on the basis of our study of the topology of the electronic charge density. Then, the species 1 and 2 present a three-center-two-electron (3c-2e) bond of singular characteristics as compared with other carbocationic species, but in the species 3, the absence of a 3c-2e bond is noteworthy. This structure can be characterized through the three bond critical points found, corresponding to saddle points on the path bonds between the C-H(2,3,5) that lie in the same plane. These nuclei define a four-center interaction where the electronic delocalization produced among the sigma(C-H) bonds provide a stabilization of the three C-H bonds involved in this interaction (the remaining two C-H bonds are similar to those belonging to the nonprotonated species). Our results show that bonding situations with a higher number of atom arrays are possible in protonated hydrocarbons.  相似文献   

5.
An [Fe(IV)(2)(μ-O)(2)] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C-H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Because of the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe(2)(μ-O)(2)] cores. We report here that water or alcohol substrates can activate synthetic [Fe(III)Fe(IV)(μ-O)(2)] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C-H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [Fe(III)Fe(IV)(μ-O)(2)] core, resulting in the formation of a more reactive species with a [X-Fe(III)-O-Fe(IV)═O] ring-opened structure (1-X, 2-X, X = OH(-) or OR(-)). Treatment of 2 with methoxide at -80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 Fe(III)/S = 2 Fe(IV)] pair. Even at this low temperature, the complex undergoes facile intramolecular C-H bond cleavage to generate formaldehyde, showing that the terminal high-spin Fe(IV)═O unit is capable of oxidizing a C-H bond as strong as 96 kcal mol(-1). This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C-H bond (D(C-H) 81 kcal mol(-1)). The activation of the [Fe(III)Fe(IV)(μ-O)(2)] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second-order rate constant that is 3.6 × 10(7)-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an S = 2 Fe(IV)═O unit is much more reactive at H-atom abstraction than its S = 1 counterpart and suggest that core isomerization could be a viable strategy for the [Fe(IV)(2)(μ-O)(2)] diamond core of sMMO-Q to selectively attack the strong C-H bond of methane in the presence of weaker C-H bonds of amino acid residues that define the diiron active site pocket.  相似文献   

6.
The reaction mechanism of the ruthenium--porhyrin complex [Ru(por)(CO)]-catalyzed intramolecular C-H bond amidation was examined using density functional theory (DFT) calculations. The metal-nitrene reactive intermediate, Ru(por)(CO)-NSO3R1 (R1 = 1-methylclohexl-methyl) was found to be highly favorable to generate in terms of the free energy profile from the reaction of the starting materials. Ru(por)(CO)-NSO3R1 may exist in both singlet and triplet states since they are close in energy. In each state, six C-H bond amidation reaction pathways were characterized structurally and energetically. The predicted most probable diastereomeric product out of the four possible diasteromeric products examined in the calculations for the amidation reactions agree well with previously reported experimental results.  相似文献   

7.
Density functional theory has been used to investigate the nature of the oxidizing agent in the Fenton reaction. Starting from the primary intermediate [FeII(H2O)5H2O2]2+, we show that the oxygen-oxygen bond breaking mechanism has a small activation energy and could therefore demonstrate the catalytic effect of the metal complex. The O-O bond cleavage of the coordinated H2O2, however, does not lead to a free hydroxyl radical. Instead, the leaving hydroxyl radical abstracts a hydrogen from an adjacent coordinated water leading to the formation of a second Fe-OH bond and of a water molecule. Along this reaction path the primary intermediate transforms into the [FeIV(H2O)4(OH)2]2+ complex and in a second step into a more stable high valent ferryl-oxo complex [FeIV(H2O)5O]2+. We show that the energy profile along the reaction path is strongly affected by the presence of an extra water molecule located near the iron complex. The alternative intermediate [FeII(H2O)4(OOH-)(H3O+)]2+ suggested in the literature has been also investigated, but it is found to be unstable against the primary intermediate. Our results support a picture in which an FeIV-oxo complex is the most likely candidate as the active intermediate in the Fenton reaction, as indeed first proposed by Bray and Gorin already in 1932.  相似文献   

8.
The catalytic conversion of 1,2-cyclohexanediol to adipic anhydride by Ru(IV)O(tpa) (tpa ═ tris(2-pyridylmethyl)amine) is discussed using density functional theory calculations. The whole reaction is divided into three steps: (1) formation of α-hydroxy cyclohexanone by dehydrogenation of cyclohexanediol, (2) formation of 1,2-cyclohexanedione by dehydrogenation of α-hydroxy cyclohexanone, and (3) formation of adipic anhydride by oxygenation of cyclohexanedione. In each step the two-electron oxidation is performed by Ru(IV)O(tpa) active species, which is reduced to bis-aqua Ru(II)(tpa) complex. The Ru(II) complex is reactivated using Ce(IV) and water as an oxygen source. There are two different pathways of the first two steps of the conversion depending on whether the direct H-atom abstraction occurs on a C-H bond or on its adjacent oxygen O-H. In the first step, the C-H (O-H) bond dissociation occurs in TS1 (TS2-1) with an activation barrier of 21.4 (21.6) kcal/mol, which is followed by abstraction of another hydrogen with the spin transition in both pathways. The second process also bifurcates into two reaction pathways. TS3 (TS4-1) is leading to dissociation of the C-H (O-H) bond, and the activation barrier of TS3 (TS4-1) is 20.2 (20.7) kcal/mol. In the third step, oxo ligand attack on the carbonyl carbon and hydrogen migration from the water ligand occur via TS5 with an activation barrier of 17.4 kcal/mol leading to a stable tetrahedral intermediate in a triplet state. However, the slightly higher energy singlet state of this tetrahedral intermediate is unstable; therefore, a spin crossover spontaneously transforms the tetrahedral intermediate into a dione complex by a hydrogen rebound and a C-C bond cleavage. Kinetic isotope effects (k(H)/k(D)) for the electronic processes of the C-H bond dissociations calculated to be 4.9-7.4 at 300 K are in good agreement with experiment values of 2.8-9.0.  相似文献   

9.
Based on the PCN ligand 2, a remarkable degree of control over C-C versus C-H bond activation and versus formation of an agostic C-C complex was demonstrated by choice of cationic [Rh(CO)(n)(C(2)H(4))(2-n)] (n=0, 1, 2) precursors. Whereas reaction of 2 with [Rh(C(2)H(4))(2)(solv)(n)]BF(4) results in exclusive C-C bond activation to yield product 5, reaction with the dicarbonyl precursor [Rh(CO)(2)(solv)(n)]BF(4) leads to formation of the C-H activated complex 9. The latter process is promoted by intramolecular deprotonation of the C-H bond by the hemilabile amine arm of the PCN ligand. The mixed monocarbonyl monoethylene Rh species [Rh(CO)(C(2)H(4))]BF(4) reacts with the PCN ligand 2 to give an agostic complex 7. The C-C activated complex 5 is easily converted to the C-H activated one (9) by reaction with CO; the reaction proceeds by a unique sequence of 1,2-metal-to-carbon methyl shift, agostic interaction, and C-H activation processes. Similarly, the C-C agostic complex 7 is converted to the same C-H activated product 9 by treatment with CO.  相似文献   

10.
Electrospray ionization mass spectrometry, subsequent MS/MS, and high-resolution mass spectrometry were used to study the dehydrogenative Heck reaction of 2-alkylfurans 1 with acrylates 2, using [Pd(OAc)(2)](3) as the precatalyst, benzoquinone (BQ) as the stoichiometric oxidant, and a mixture of DMSO and AcOH as the solvent. Complexation of [Pd(OAc)(2)](3) by DMSO afforded mononuclear and dinuclear Pd(II) species, which proved to be active catalysts for the C-H activation of 1. Mononuclear and dinuclear Pd(II) species seem also to be involved in the insertion of 2 into the furyl-Pd bond. The C-H activation of 2 and DMSO by mononuclear complexes was observed. The reaction leads to 5,5'-dialkyl-2,2'-bifuran 4 as a byproduct. Bifuryl-palladium, which is an intermediate in the formation of 4, showing the coordination of BQ, was obtained and characterized.  相似文献   

11.
王东升  李文涛  杨晓芳  安广宇 《应用化学》2016,33(11):1221-1233
多种新型污染物和微生物污染等问题的出现,导致地表水水质复杂多变,传统的水处理药剂和处理方式已无法满足人们对饮用水处理的需求。 高铁酸盐作为一种新型水处理试剂,同时具备优良的氧化性和混凝性,而且不会引起二次污染,是一种可大力开发的绿色试剂。 本文综述了高铁酸盐净水剂的制备与表征分析方法,及其用于水处理对重金属、新型污染物和微生物等去除的作用机制。 目前,有关高铁酸盐用于有机污染物去除的混凝和氧化去除协同作用的研究尚不多见,高铁酸盐的氧化-混凝协同特性尚未被充分开发。 本文以此为重点进行了讨论,并对高铁酸盐净水剂的应用进行了展望。  相似文献   

12.
Quantum mechanical calculations were applied to resolve controversies about phosphate surface complexes on iron hydroxides. Six possible surface complexes were modeled: deprotonated, monoprotonated, and diprotonated versions of bridging bidentate and monodentate complexes. The calculated frequencies were compared to experimental IR frequency data (Persson et al. J. Colloid Interface Sci. 1996, 177, 263-275; Arai and Sparks J. Colloid Interface Sci. 2001, 241, 317-326.). This study suggests that the surface complexes change depending on pH. Four possible species are a diprotonated bidentate complex at pH 4-6, either a deprotonated bidentate or a monoprotonated monodentate complex at pH 7.5-7.9, and a deprotonated monodentate complex at pH 12.8. In addition, reaction energies were calculated for adsorption from aqueous solution to determine relative stability to form a monoprotonated monodentate complex and a deprotonated bidentate complex. According to these results, the monoprotonated monodentate complex should be favored. Vibrational frequencies of the monoprotonated monodentate and deprotonated bidentate complexes were analyzed with electronic effects on the Fe-OP and H-OP bonds.  相似文献   

13.
We investigate the mechanism of methanol oxidation to formaldehyde by ironoxido ([Fe(IV)O]2+), the alleged active intermediate in the Fenton reaction. The most likely reaction mechanisms are explored with density functional theory (DFT) calculations on microsolvated clusters in the gas phase and, for a selected set of mechanisms, with constrained Car-Parrinello molecular dynamics (CPMD) simulations in water solution. Helmholtz free energy differences are calculated using thermodynamic integration in a simulation box with 31 water molecules at 300 K. The mechanism of the reaction is investigated with an emphasis on whether FeO2+ attacks methanol at a C-H bond or at the O-H bond. We conclude that the most likely mechanism is attack by the oxido oxygen at the C-H bond ("direct CH mechanism"). We calculate an upper bound for the reaction Helmholtz free energy barrier in solution of 50 kJ/mol for the C-H hydrogen transfer, after which transfer of the O-H hydrogen proceeds spontaneously. An alternative mechanism, starting with coordination of methanol directly to Fe ("coordination OH mechanism"), cannot be ruled out, as it involves a reaction Helmholtz free energy barrier in solution of 44 +/- 10 kJ/mol. However, this coordination mechanism has the disadvantage of requiring a prior ligand substitution reaction, to replace a water ligand by methanol. Because of the strong acidity of [FeO(H2O)5]2+, we also investigate the effect of deprotonation of a first-shell water molecule. However, this is found to increase the barriers for all mechanisms.  相似文献   

14.
The C-H activation in Shilov's system on cis- and trans-PtCl(2)(H(2)O)(CH(4)) was investigated by ab initio molecular dynamics in water. Simulations revealed an easy C-H bond cleavage forming a transient 5-coordinated species Pt(H)Cl(2)(H(2)O)(CH(3)) that spontaneously releases a proton to the bulk solution.  相似文献   

15.
The spectroscopic and chemical characterization of a new synthetic non-heme iron(IV)-oxo species [Fe(IV)(O)((Me,H) Pytacn)(S)](2+) (2, (Me,H)Pytacn=1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane, S=CH(3)CN or H(2)O) is described. Complex 2 was prepared by reaction of [Fe(II)(CF(3)SO(3))(2)((Me,H) Pytacn)] (1) with peracetic acid. Complex 2 bears a tetradentate N(4) ligand that leaves two cis sites available for binding an oxo group and a second external ligand but, unlike the related iron(IV)-oxo species with tetradentate ligands, it is remarkably stable at room temperature (t(1/2)>2 h at 288 K). Its ability to exchange the oxygen atom of the oxo ligand with water has been analyzed in detail by means of kinetic studies, and a mechanism is proposed on the basis of DFT calculations. Hydrogen-atom abstraction from C-H bonds and oxygen-atom transfer to sulfides by 2 have also been studied. Despite its thermal stability, 2 proves to be a very powerful oxidant that is capable of breaking the strong C-H bond of cyclohexane (bond dissociation energy=99.3 kcal mol(-1)).  相似文献   

16.
Exchange of deuterium in d6-benzene with all C-H sites in (PNP)Ru(OTf), where PNP is N(SiMe2CH2PtBu2)2 and OTf is OSO2CF3, is rapid at 22 degrees C. Although intact planar triplet (PNP)Ru(OTf) binds N2 only very weakly, these reagents are observed to react rapidly to give a diamagnetic 1:1 adduct whose structure has one tBu C-H bond cleaved: the carbon binds to Ru but the hydrogen is on the PNP nitrogen, creating a secondary amine ligand bound to RuII. It is suggested that the benzene C-D cleavage and the N2 product of tBu C-H bond heterolysis both derive from a common intermediate, [HN(SiMe2CH2PtBu2)(SiMe2CH2PtBuCMe2CH2)] Ru(OTf); the formation energy and structure of this species are discussed on the basis of DFT results.  相似文献   

17.
A systematic theoretical study is carried out on the mechanism for Pd(II)-catalyzed oxidative cross-coupling between electron-deficient arenes and alkenes. Two types of reaction pathways involving either a sequence of initial arene C-H activation followed by alkene activation, or the reverse sequence of initial alkene C-H activation followed by arene activation are evaluated. Several types of C-H activation mechanisms are discussed including oxidative addition, σ-bond metathesis, concerted metalation/deprotonation, and Heck-type alkene insertion. It is proposed that the most favored reaction pathway should involve an initial concerted metalation/deprotonation step for arene C-H activation by (L)Pd(OAc)(2) (L denotes pyridine type ancillary ligand) to generate a (L)(HOAc)Pd(II)-aryl intermediate, followed by substitution of the ancillary pyridine ligand by alkene substrate and direct insertion of alkene double bond into Pd(II)-aryl bond. The rate- and regio-determining step of the catalytic cycle is concerted metalation/deprotonation of arene C-H bond featuring a six-membered ring transition state. Other mechanism alternatives possess much higher activation barriers, and thus are kinetically less competitive. Possible competing homocoupling pathways have also been shown to be kinetically unfavorable. On the basis of the proposed reaction pathway, the regioselectivity predicted for a number of monosubstituted benzenes is in excellent agreement with experimental observations, thus, lending further support for our proposed mechanism. Additionally, the origins of the regioselectivity of C-H bond activation is elucidated to be caused by a major steric repulsion effect of the ancillary pyridine type ligand with ligands on palladium center and a minor electronic effect of the preinstalled substituent on the benzene ring on the cleaving C-H bond. This would finally lead to the formation of a mixture of meta and para C-H activation products with meta products dominating while no ortho products were detected. Finally, the multiple roles of the ancillary pyridine type ligand have been discussed. These insights are valuable for our understanding and further development of more efficient and selective transition metal-catalyzed oxidative C-H/C-H coupling reactions.  相似文献   

18.
The mechanism of the reaction of Ni^ (^2D) with ethane in the gas-phase was studied by using density functional theory.Both the B3LYP and BLYP functionals with standard all-electron basis sets are used to give the detailed information of the potential energy surface (PES) of [Ni,C2,H6]^ . The mechanisms forming the products CH4 and H2 in the reaction of Ni^ with ethane are proposed.The reductive eliminations of CH4 and H2 are typical addition-elimination reactions.Each of the two reactions consists of two elementary steps:C-C or C-H bond activations to form inserted species followed by isomerizations to from product-like intermediate.The rate determining steps for the elimination reactions of forming CH4 and H2 are the isomerization of the inserted species rather than C-C or C-H bond activations .The elimination reaction of forming H2 was found to be thermodynamically favored compared to that of CH4.  相似文献   

19.
Kinetic data for the C-H bond activation of 2-phenylpyridine by Ru(II)(carboxylate)(2)(p-cymene) I (acetate) and I' (pivalate) are available for the first time. They reveal an irreversible autocatalytic process catalyzed by the coproduct HOAc or HOPiv (acetonitrile, 27 °C). The overall reaction is indeed accelerated by the carboxylic acid coproduct and water. It is retarded by a base, in agreement with an autocatalytic process induced by HOAc or HOPiv that favors the dissociation of one carboxylate ligand from I and I' and consequently the ensuing complexation of 2-phenylpyridine (2-PhPy). The C-H bond activation initially delivers Ru(O(2)CR)(o-C(6)H(4)-Py)(p-cymene) A or A', containing one carboxylate ligand (OAc or OPiv, respectively). The overall reaction is accelerated by added acetates. Consequently, C-H bond activation (faster for acetate I than for pivalate I') proceeds via an intermolecular deprotonation of the C-H bond of the ligated 2-PhPy by the acetate or pivalate anion released from I or I', respectively. The 18e complexes A and A' easily dissociate, by displacement of the carboxylate by the solvent (also favored by the carboxylic acid), to give the same cationic complex B(+) {[Ru(o-C(6)H(4)-Py)(p-cymene)(MeCN)](+)}. Complex B(+) is reactive toward oxidative addition of phenyl iodide, leading to the diphenylated 2-pyridylbenzene.  相似文献   

20.
A novel and efficient C-C bond formation method was developed via the cross-dehydrogenative coupling (CDC) reaction of indoles and tetrahydroisoquinolines catalyzed by copper bromide in the presence of an oxidizing reagent, tert-BuOOH. The CDC reaction provides a simple and efficient catalytic method to construct indolyl tetrahydroisoquinolines via a combination of sp3 C-H bond and sp2 C-H bond followed by C-C bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号