首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
For functions f which are bounded throughout the plane R2 together with the partial derivatives f(3,0) f(0,3), inequalities $$\left\| {f^{(1,1)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} ,\left\| {f_e^{(2)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left( {\left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_1 } \right| + \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_2 } \right|} \right)^2 ,$$ are established, where ∥?∥denotes the upper bound on R2 of the absolute values of the corresponding function, andf fe (2) is the second derivative in the direction of the unit vector e=(e1, e2). Functions are exhibited for which these inequalities become equalities.  相似文献   

9.
LetF be the distribution function of a sumS n ofn independent centered random variables, denote the standard normal distribution function and its density. It follows from our results that
  相似文献   

10.
11.
12.
13.
14.
15.
Let B be a Banach space with norm ‖ · ‖ and identity operator I. We prove that, for a bounded linear operator T in B, the strong Kreiss resolvent condition
$\parallel (T - \lambda I)^{ - k} \parallel \leqslant \frac{M}{{(|\lambda | - 1)^k }}, |\lambda | > 1,k = 1,2, \ldots ,$
implies the uniform Kreiss resolvent condition
$\left\| {\sum\limits_{k = 0}^n {\frac{{T^k }}{{\lambda ^{k + 1} }}} } \right\| \leqslant \frac{L}{{|\lambda | - 1}}, |\lambda | > 1, n = 0,1,2, \ldots .$
We establish that an operator T satisfies the uniform Kreiss resolvent condition if and only if so does the operator T m for each integer m ? 2.
  相似文献   

16.
17.
18.
The main aim of this paper is to prove that the maximal operator $\sigma _p^{\kappa , * } f: = \sup _{n \in P} {{\left| {\sigma _n^\kappa f} \right|} \mathord{\left/ {\vphantom {{\left| {\sigma _n^\kappa f} \right|} {\left( {n + 1} \right)^{{1 \mathord{\left/ {\vphantom {1 {p - 2}}} \right. \kern-0em} {p - 2}}} }}} \right. \kern-0em} {\left( {n + 1} \right)^{{1 \mathord{\left/ {\vphantom {1 {p - 2}}} \right. \kern-0em} {p - 2}}} }}$ is bounded from the Hardy space H p to the space L p for 0 < p < 1/2.  相似文献   

19.
We demonstrate how a well studied combinatorial optimizationproblem may be used as a new cryptographic primitive. The problemin question is that of finding a "large" clique in a randomgraph. While the largest clique in a random graph with nvertices and edge probability p is very likely tobe of size about , it is widely conjecturedthat no polynomial-time algorithm exists which finds a cliqueof size with significantprobability for any constant > 0. We presenta very simple method of exploiting this conjecture by hidinglarge cliques in random graphs. In particular, we show that ifthe conjecture is true, then when a large clique—of size,say, is randomlyinserted (hidden) in a random graph, finding a clique ofsize remains hard.Our analysis also covers the case of high edge probabilitieswhich allows us to insert cliques of size up to . Our result suggests several cryptographicapplications, such as a simple one-way function.  相似文献   

20.
In 1979 R. S. Singh(Ann. Statist, 1979, p. 890) made a conjecture concerning the convergence rate of EB estimates of the parameter θ in an one-dimensional continuous exponential distribution family, under the square loss function, the prior distribution family being confined to a bounded interval. The conjecture asserts that the rate cannot reach o(1/n) or even O(1/n). In this article, the weaker part of this conjecture(i. e. the o(1/n) part) is shown to be correct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号