首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为了开发氮化铟(InN)半导体材料在光电子领域的应用,采用磁控溅射法在Si(111)衬底上实现了InN薄膜的制备.通过X射线衍射仪(XRD)和扫描电镜(SEM)对获得的InN薄膜样品进行表征,系统地研究了压强、Ar和N2流量比及衬底温度对InN薄膜结构、形貌的影响.结果表明:随着压强的增加,(101)峰的强度先增加后减小,晶面距离d先变小后变大且均获得三角锥形的InN薄膜;随着Ar与N2流量比的增加,InN薄膜的生长取向由沿(101)面变为沿(002)面生长且均获得三角锥状的InN晶粒;随着衬底温度的升高,InN薄膜的生长取向发生了变化且形貌逐渐由三角锥状向截面为六方的颗粒状结构转化.  相似文献   

2.
采用固源分子束外延(SSMBE)技术,在α-Al2O3(0001)衬底上直接制备出了SiC薄膜.利用反射式高能电子衍射(RHEED)、Raman光谱、X射线扫描、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)等实验技术,对生长的样品的结构和结晶质量进行了表征.结果表明:在蓝宝石衬底上生长出了结晶性能良好的6H-SiC薄膜,且薄膜中存在较小的压应力,这种压应力是由薄膜与衬底之间热膨胀系数的差异所致.  相似文献   

3.
本文采用MOCVD法分别在a面和c面蓝宝石衬底上生长出7层InGaN/GaN多量子阱结构的GaN薄膜,采用X射线衍射(XRD)、拉曼光谱仪、吸收光谱等手段对样品进行表征.分析表明:a面蓝宝石衬底上生长的GaN薄膜(样品A)的FWHM为781.2 arcsec,c面蓝宝石衬底上生长的GaN薄膜(样品B)的FWHM为979.2 arcsec.样品A和样品B中存在的压应力分别为0.8523 GPa和1.2714 GPa,薄膜的能带宽度(理论值为3.4 eV)分别为3.38 eV和3.37 eV.以上数据表明a面蓝宝石衬底上生长出来GaN薄膜的结晶质量较好,光学性能更优异.  相似文献   

4.
采用光辅助金属有机物化学气相沉积技术,在LaAlO3(100)单晶衬底上外延制备约500 nm厚YBCO/ND-Y2O3/YBCO薄膜.用X射线衍射技术分析薄膜的物相结构和外延特性,通过扫描电子显微镜观察薄膜的表面与截面形貌.主要研究了不同生长时间的Y2 O3纳米点对YBCO超导薄膜性能的影响.Y2 O3纳米点生长时间为2Os样品的临界电流密度达到2.4 MA/cm2(77 K,0T),与未生长Y2O3纳米点的YBCO薄膜相比,其临界电流密度提高20;.分析表明,薄膜中的Y2O3在YBCO薄膜内部起到了有效钉扎中心作用,提高了临界电流密度.  相似文献   

5.
为研究纳米硅晶粒成核生长动力学过程,采用脉冲激光烧蚀(PLA)技术,在室温,50~200 Pa的氩气氛围中,通过引入垂直于烧蚀羽辉轴线的外加气流,在水平放置的衬底上沉积了一系列纳米Si晶薄膜.扫描电子显微镜( SEM)、拉曼(Raman)散射和X射线衍射(XRD)检测结果表明,未引入气流时,衬底上相同位置处晶粒尺寸随气体压强的增大逐渐减小;在距靶1 ~2cm范围内引入气流后,尺寸变化规律与未引入气流时相反.通过分析晶粒尺寸及其在衬底上的位置分布特点,结合流体力学模型和热动力学方程,分析得出在激光能量密度一定的条件下,环境气体压强、烧蚀粒子温度和密度共同影响着纳米晶粒的成核生长.  相似文献   

6.
用脉冲激光淀积法(PLD)在(111)面SrTiO3衬底上外延生长ZnO单晶薄膜.样品分别在衬底温度为350℃、500℃、600℃下外延生长.X射线衍射(XRD)的结果表明,所得的ZnO单晶薄膜结晶性能好,只出现(002)和(004)两个衍射峰,(002)峰的半高宽度(FWHM)为0.23°.在荧光光谱中我们只观察到来源于带边激子跃迁的强UV发射,并且随着生长温度的升高,紫外峰的强度逐渐增强.样品的SEM图像表明所得ZnO薄膜表面平整,晶粒均匀.衬底温度为600℃时,所得到的ZnO薄膜结构完整,晶粒尺寸最大,均匀;而且紫外发射最强.  相似文献   

7.
螺旋波等离子体化学气相沉积法制备纳米碳化硅薄膜   总被引:1,自引:0,他引:1  
采用螺旋波等离子体化学气相沉积 (HWP-CVD)技术在Si(100)和石英衬底上合成了具有纳米结构的碳化硅薄膜.通过X射线衍射(XRD)、傅立叶红外透射(FTIR)和原子力显微镜(AFM)等技术对所制备薄膜的结构、组分和形貌进行了分析,利用光致发光技术研究了样品的发光特性.分析表明,在700℃的衬底温度和1.33Pa的气压条件下所制备纳米SiC薄膜的平均颗粒度在3nm以下,红外透射谱主要表现为Si-C吸收.结果说明HWP-CVD为制备高质量纳米SiC薄膜的有效技术,所制备样品呈现出室温短波长可见发光特性,发光谱主峰位于395nm附近.  相似文献   

8.
利用金属有机化学气相沉积系统(MOCVD),在蓝宝石的(0001)面采用不同的成核层生长温度,通过两步法获得不同质量的GaN外延薄膜.利用HALL测试仪,高分辨X射线衍射仪(HRXRD),原子力显微镜(AFM)和光致发光光谱仪(PL)对GaN薄膜的表面形貌,位错密度,光学性能等进行表征,研究不同的成核温度对GaN外延薄膜晶体质量的影响.结果表明,在成核层生长温度为650℃时,所得到的GaN外延薄膜表面粗糙度和位错密度均达到最低,并且同时具有最高的带边发光峰强度,最高的载流子迁移率以及最低的载流子浓度.过低或过高的成核温度都会导致GaN外延层的晶体质量和光电性能变差.  相似文献   

9.
通过采用化学气相沉积法(CVD),以金属Ga和NH3为原料,在Si (100)衬底和蓝宝石衬底上采用催化剂Ni合成了GaN微米片.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、X-ray能谱仪(EDS)、光致发光谱(PL)和霍尔效应测试仪(HMS-3000)对样品进行表征.结果表明,生成的微米片为六方纤锌矿结构的GaN;样品在360 nm处有一近带边紫外发射峰,在676 nm处有一个因缺陷引起的弱的红光发射峰;不同衬底上产物GaN的电学性能有所不同.最后,对本实验所得的GaN微米片的形成机理进行了分析.  相似文献   

10.
在室温、10 Pa氩气环境下,采用脉冲激光烧蚀(PLA)技术,通过改变激光能量密度,在烧蚀点正下方、与烧蚀羽辉轴线平行放置的衬底上沉积制备了一系列纳米Si晶薄膜.采用SEM、Raman散射谱和XRD对纳米Si晶薄膜进行了表征.结果表明:沉积在衬底上的纳米Si晶粒分布在距靶一定的范围内,晶粒尺寸随与靶面距离的增加先增大后减小;随着激光能量密度的增加,晶粒在衬底上的沉积范围双向展宽,但沉积所得最大晶粒尺寸基本保持不变,只是沉积位置随激光能量密度的增加相应后移.结合流体力学模型、成核分区模型和热动力学方程,通过模拟激光烧蚀靶材的动力学过程,对纳米Si晶粒的成核生长动力学过程进行了研究.  相似文献   

11.
High density InN/GaN nanodots were grown by pulsed mode (PM) metal–organic chemical vapor deposition (MOCVD). InN nanodots density of up to ∼5×1010 cm−2 at a growth temperature of 550 °C was achieved. The high diffusion activation energy of 2.65 eV due to high NH3 flow rate generated more reactive nitrogen adatoms on the growth surface, and is believed to be the main reason for the growth of high density InN nanodots. In addition, an anomalous temperature dependence of the PL peak energy was observed for high density InN nanodots. The high carrier concentration, due to high In vacancy (VIn) in the InN nanodots, thermally agitated to the conduction band. As the measurement temperature increased, the increase of Fermi energy resulted in blue-shifted PL peak energy. From the Arrhenius plot of integrated PL intensity, the thermal activation energy for the PM grown InN nanodots was estimated to be Ea∼51 meV, indicating strong localization of carriers in the high density InN nanodots.  相似文献   

12.
The structural and electrical properties of N- and In-polar InN films grown directly on substrates were investigated. The twist contribution of directly grown InN films, which was defined by the estimated X-ray rocking curve's full-width at half-maximum (XRC's FWHM) of InN (1 01¯ 0) reflection, varied considerably by at least 40 arcmin for both N- and In-polar InN films, depending on growth conditions. In contrast, the tilt contribution, defined by the XRC's FWHM of InN (0 0 0 2) reflection, was roughly fixed at 1.5–2.5 arcmin for N-polar InN films and 8–12 arcmin for In-polar InN films. For samples with the same twist contribution, In-polar InN films had larger tilt contribution than N-polar InN films. Nevertheless, electrical properties of In-polar InN had much better properties than those of N-polar InN films.  相似文献   

13.
MOVPE growth of InN on sapphire substrates is compared using two different designs of horizontal reactor. The major difference between the two designs is a variation in the reactant-gas flow-spacing between the substrate and the ceiling of the quartz chamber: 33 mm for the Type A reactor and 14 mm for Type B. Compared with the Type A reactor, the Type B reactor brings about InN films with a larger grain size. This is especially true when InN is grown at 600°C using the Type B reactor, in which case the two-dimensional (2D) growth of InN is found to be extremely enhanced. An investigation of the NH3/TMIn molar ratio dependence of the surface morphology of grown InN films using the two reactors suggests that the enhanced 2D growth is attributed to the decrease in the effective NH3/TMIn ratio in the growth atmosphere. Even using the Type A reactor, a film with enhanced 2D growth can be obtained when the NH3/TMIn ratio is considerably low (1.8×104). The enhanced 2D growth results in a smaller XRC-FWHM (full-width at half maximum of the X-ray rocking curve) (1500 arcsec), than that for a 3D-grown film (5000 arcsec).  相似文献   

14.
Cubic InN films have been grown on MgO (1 0 0) substrates with cubic GaN buffer layers by pulsed laser deposition (PLD). It has been found that cubic InN (1 0 0) films grow on the GaN (1 0 0)/MgO (1 0 0) structure with an in-plane epitaxial relationship of [0 0 1]InN∥[0 0 1]GaN∥[0 0 1]MgO. The phase purity of a cubic InN film grown at 440 °C was as high as 99% that can probably be attributed to the enhanced surface migration of film precursors in case of PLD. These results indicate that PLD is a suitable technique for the growth of high-quality cubic InN films, and will makes it possible to fabricate optical and electron devices based on cubic InN films.  相似文献   

15.
InN films have been successfully grown on sapphire substrates by MOVPE using trimethylindium (TMIn) and 1,1-dimethylhydrazine (DMHy) with N2 carrier. DMHy is an advantageous precursor of N as it decomposes efficiently at relatively low temperature (T50=420 °C) compatible with the InN growth. The reactor is specially designed so as to avoid parasitic reaction between TMIn and DMHy occurring at room temperature. The growth feature was studied by varying growth temperature, V/III ratio, TMIn flow and reactor pressure. The InN films were obtained at 500–570 °C and 60–200 Torr with a V/III ratio optimized to 100–200. The In droplets are seen on the grown surfaces, indicating an excess supply of TMIn. It is demonstrated that the InN films grows on the sapphire substrate in a single domain with an epitaxial relationship, [1 01¯ 0]InN//[1 1 2¯ 0]sapphire.  相似文献   

16.
Electronic structures of edge dislocations in InN films are studied using the first-principles calculation. We found that dangling-bond states of In atoms localized in the dislocation core are located above the conduction-band bottom and thus supplies the electron carriers to the conduction band of bulk InN, in agreement with the experimental suggestion by Wang et al. [Appl. Phys. Lett. 90 (2007) 151901]. Moreover, it is shown that the Fermi energy in the conduction band has the tendency to be pinned at the energy positions of N-related dangling-bond states.  相似文献   

17.
The influence of Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition (MOCVD) has been systematically studied. Compared with the sample without Al pre-deposition, optimum Al pre-deposition time could improve the AlN buffer layer crystal quality and reduce the root mean square (RMS) roughness. Whereas, overlong Al-deposition time deteriorated the AlN crystal quality and Al-deposition patterns could be found. Cracks and melt-back etching patterns appeared in the GaN layer grown without Al pre-deposition. With suitable Al-deposition time, crack-free 2.0 μm GaN was obtained and the full-width at half-maximum (FWHM) of (0 0 2) plane measured by double crystal X-ray diffraction (DCXRD) was as low as 482 arcsec. However, overlong Al-deposition time would result in a great deal of cracks, and the crystal quality of GaN layer deteriorated. The surface of GaN layer became rough in the region where the Al-deposition patterns were formed due to overlong Al-deposition time.  相似文献   

18.
This paper reports the first attempt of the Pt-catalyst-assisted MOVPE growth of InN. In order to enhance NH3 decomposition at a relatively low growth temperature (~550 °C), Pt is used as a catalyst. The catalyst is installed in the NH3 introduction tube in the MOVPE reactor and the tube is located just above the susceptor to be heated. Compared with InN films grown without the catalyst, the samples grown with Pt catalyst show improved electrical properties; a carrier concentration in the order of 1018 cm?3 and a Hall mobility as high as 1350 cm2/Vs are obtained. The crystalline quality is also improved by employing the catalyst and a tilt fluctuation as low as 8.6 arcmin is obtained for a sample grown on a GaN/sapphire template. It is confirmed that for InN films grown at 550 °C with Pt catalyst, the electrical and crystallographic properties are also improved with increase in thickness. These results indicate that the growth at around 550 °C with the Pt catalyst is performed under the circumstances where NH3 is effectively decomposed, whereas the deterioration of InN during growth is significantly suppressed.  相似文献   

19.
Indium nitride (InN) layers were grown on (1 1 1) silicon substrates by reactive magnetron sputtering using an indium target. Atomic force microscope, X-ray diffraction, and Raman spectroscopy analysis revealed that highly c-axis preferred wurtzite InN layers with very smooth surface can be obtained on (1 1 1) silicon substrates at a substrate temperature as low as 100 °C. The results indicate that the reactive sputtering is a promising growth technique for obtaining InN layers on silicon substrates at low substrate temperature with low cost and good compatibility with microelectronic silicon-based devices.  相似文献   

20.
We report on the MOCVD growth of InN buffer layers on sapphire substrate for InN growth. The approach used assumes that an optimized InN buffer layer has to exhibit at least the same crystalline quality and sapphire surface coverage than the GaN buffer layers allowing to grow high crystalline quality GaN on sapphire. The buffer layers were characterized by AFM and GID measurements. Sapphire nitridation was investigated: it has a strong influence on in-plane crystalline quality. Two kinds of buffer layers were optimized according to the GaN buffer layer specifications: one of them only presented In droplets at its surface. It was shown that the small amount of In droplets increases the adatoms mobility of the main layer overgrown, leading to a 25% decrease of its in-plane mosaicity, compared to InN films directly grown on sapphire. To achieve a same improvement on InN buffer layer free of In droplets, the InN main layer growth temperature had to be increased from 550 °C. to 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号