首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
多孔介质中超临界C O2对流换热数值模拟   总被引:4,自引:2,他引:2  
本文对超临界二氧化碳在多孔结构中的对流换热进行了数值模拟研究.结果表明,超临界条件下二氧化碳剧烈的变物性对多孔介质中的对流换热会产生很大影响;局部热平衡条件下对流换热系数的数值计算值比局部非热平衡条件下的计算结果大;对流换热系数随着颗粒直径的增大而增大.  相似文献   

2.
本文采用局部非热平衡模型对发汗冷却过程中多孔壁面内的换热和流动进行了数值模拟,分析了影响多孔介质内固体骨架与流体的温度及温差分布的因素,研究了这些因素对发汗冷却过程的影响规律.计算结果表明:增大固体骨架的导热系数、增大冷却剂流速或者加强冷端换热有利于提高发汗冷却效率.  相似文献   

3.
王平  尹玉真  沈胜强 《物理学报》2014,63(21):214401-214401
利用CFD软件数值研究了颗粒三维有序堆积多孔介质的对流换热问题. 采用颗粒直径分别为14 mm,9.4 mm和7 mm的球形颗粒有序排列构成多孔介质骨架,在多孔骨架的上方有一恒热流密度的铜板. 采用流固耦合的方法研究了槽通道内温度分布和局部对流换热系数的分布以及对流换热的影响因素. 研究结果表明:热渗透的厚度和温度边界层的厚度在流动方向上逐渐增大,并且随流量的增加而减小;当骨架的导热系数比较高时,对流换热随颗粒直径的减小而略有增大;对流换热系数随聚丙烯酰胺溶液浓度的增大而减小,黏性耗散减弱了对流换热. 关键词: 多孔介质 温度场 局部对流换热系数 数值模拟  相似文献   

4.
本文对空气流过烧结微细多孔介质内部的对流换热进行了实验研究。实验段为烧结多孔介质,颗粒的平均直径为0.2 mm。通过“单吹法”的实验方法进行瞬态实验,并用两种不同的数据处理方法得到了多孔介质内部对流换热系数。数据处理方法1利用局部非热平衡能量方程,结合实验数据,数值求得了多孔介质内部对流换热系数。方法2利用实验数据直接求得内部对流换热系数。研究表明:用数据处理方法1得到的多孔介质内部对流换热系与用方法2得到的结果相差在10%以内,与已有结果基本吻合。  相似文献   

5.
建立了内径为2 mm的三叶管三维模型,使用ANSYS Fluent软件对超临界二氧化碳在三叶管内的对流换热特性进行了研究,分析了流动方向、进口雷诺数、壁面热流密度和冷却压力等因素对局部换热系数的影响,结果表明:在本文研究的范围内,流动方向对超临界二氧化碳在三叶管内局部换热系数的影响较小,可以忽略,进口雷诺数、壁面热流密度和冷却压力对局部换热系数的影响较大;二氧化碳进口雷诺数越高,对应的局部对流换热系数也越高,壁面热流密度的大小对局部换热系数出现峰值位置有较大影响,对其大小影响不大;超临界二氧化碳冷却压力越高,对应的局部对流换热系数的峰值也越大;局部对流换热系数峰值所对应的温度只与冷却压力下的临界温度有关。  相似文献   

6.
发汗冷却中流动与换热的数值模拟   总被引:6,自引:1,他引:5  
本文采用改进的低Re数k-ε模型-低Re数kθ-εθ模型以及局部非热平衡模型,将主流区和多孔壁面区进行耦合,通过数值模拟研究了发汗冷却过程中的流动与换热问题。计算结果表明:多孔壁面中靠近主流区的部分温度梯度很大;随着冷却剂流量的增大,壁面上的最高温度明显下降;就本文所选取的参数而言,在发汗冷却所用的冷却剂的量占总流量的1%左右时,冷却效果非常明显。  相似文献   

7.
流体在烧结多孔槽道中对流换热的实验研究   总被引:5,自引:1,他引:4  
本文对空气和水流过烧结青铜颗粒水平多孔槽道表面上的对流换热进行了实验研究。结果表明:与空槽道表面换热相比,实验段充满烧结多孔介质后,水流过实验段的平均对流换热系数可提高7~9倍,空气可提高3~30倍;烧结多孔结构的强化换热能力大于非烧结的堆积床;直径的增大能提高水在多孔结构内的换热能力,但对空气而言在实验流量范围内无明显作用。  相似文献   

8.
冲击射流结构中应用粗糙表面的实验研究   总被引:1,自引:0,他引:1  
在单侧开口的冲击射流冷却结构中,逐步增加的横流将影响冲击板上的对流换热效率,本文提出了压窝板和肋片板两种粗糙冲击板构型,增加横流的扰动以减少对冲击流的影响并且增大横流与壁面的对流换热。实验采用瞬态热敏液晶测量方法,可以得到大尺度壁面的二维对流换热系数分布,可以较为系统地分析压窝及肋片周围的局部换热系数分布。通过实验研究,发现压窝板可以显著增大平均换热系数,而肋片板降低了平均换热系数。  相似文献   

9.
为了研究堆积多孔介质中流动沸腾换热特性,以横截面积为10 mm×10 mm、长100mm的铜管中充满直径为0.4~1.0 mm、孔隙率为0.31~0.37的钢珠的多孔介质为对象,对水在流过此多孔介质时沸腾换热现象进行了研究,获得了流速、热流密度、粒径和加热方位等对换热性能影响的规律:随着流速的增大,沸腾换热系数增大;随着热流密度增大,沸腾换热系数降低;随着热流密度的变化,小颗粒多孔介质的壁面过热度的变化量比大颗粒多孔介质要大得多;从下表面加热比从上表面加热的壁面过热度要低,约2~3 K,更有利于沸腾换热。  相似文献   

10.
本文对管外包覆多孔介质的无限长圆管绕流的流场和温度场进行数值模拟,研究了多孔介质层的无量纲厚度ep,达西数D_a以及雷诺数Re对流动和强制对流换热特性的影响。研究结果表明,管外包覆多孔介质后的强制对流换热效果明显强于光管条件下的效果,换热增强了2.8~5.4倍;壁面平均努塞尔数Nu随e_p和Re的增大而增大,随Da的增大而减小;管壁处的流动阻力系数C_D随ep的增大而增大,随D_a的减小,先增大后减小,当Da小于1×10~(-5)时,阻力系数保持不变。  相似文献   

11.
A detailed numerical modeling is performed to investigate coupled heat transfer of natural convection, radiation and conduction in high-temperature multilayer thermal insulation (MTI), which consists of high-porous, non-gray semitransparent fibrous materials and reflective foils. Radiation within fibers, radiation between fibers and the reflective foils, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection, whereas the radiative transfer equation (RTE) is used to solve the radiative heat flux for non-gray materials. Key features of the macroscopic model include two-dimensional effects, non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium (LTNE). This model was validated by comparison with experimental data and it was used to investigate natural convection of coupled heat transfer in multilayer insulation, numerical results showed that natural convection is more likely to occur when the heated/cooled rate is low, while natural convection can be ignored in simulating steady-state coupled heat transfer in MTI.  相似文献   

12.
An analysis is performed to study the influence of local thermal non-equilibrium (LTNE) on unsteady MHD laminar boundary layer flow of viscous, incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium in the presence of heat generation/absorption. The flow in the porous medium is governed by Brinkman-Forchheimer extended Darcy model. A uniform heat source or sink is presented in the solid phase. By applying similarity analysis, the governing partial differential equations are transformed into a set of time dependent non-linear coupled ordinary differential equations and they are solved numerically by Runge-Kutta Fehlberg method along with shooting technique. The obtained results are displayed graphically to illustrate the influence of different physical parameters on the velocity, temperature profile and heat transfer rate for both fluid and solid phases. Moreover, the numerical results obtained in this study are compared with the existing literature in the case of LTE and found that they are in good agreement.  相似文献   

13.
The lattice Boltzmann simulation of nanofluid flow and heat transfer during natural convection within a dumbbell-shaped heat exchanger is carried out. The heat exchanger is filled with CuO–water. The KKL model is employed to predict the thermo-physical properties of nanofluid. In order to perform a comprehensive hydrothermal investigation, different post-processing approaches such as heatline visualization, total entropy generation, local entropy generation based on local fluid friction irreversibility and heat transfer irreversibility, average and local Nusselt variation are employed. In the present investigation, it is tried to present the impact of different influential parameters like Rayleigh number, solid volume fraction of nanofluid and thermal arrangement of internal fins-bodies on the fluid flow, heat transfer rate and entropy generation.  相似文献   

14.
Natural convection in a discretely heated, vertically vented enclosure has been investigated experimentally. A vertically vented enclosure is one whose top and bottom boundaries are partially open, allowing ambient fluid to be drawn in by buoyancy. Mach-Zehnder interferometry was used to visualize the temperature field within the enclosure and to determine the local and average heat transfer characteristics of the discrete heat sources. A smoke-generation technique was used to visualize the flow structure. The experimental parameters investigated include Grashof number, vent gap width, and heater locations for a dual heater configuration and a single-enclosure aspect ratio. The vent gap width was varied between a fully open condition (discretely healed parallel plates) and nearly closed. The Mach-Zehnder interferograms and local heat transfer results suggest a complex buoyancy-driven flow field that depends intimately on the rent gap width. For some geometric configurations, the heat transfer coefficient was found to be nearly uniform across the length of the heater, while for others traditional boundary-layer-type heat transfer characteristics were found. In general, the heat transfer coefficient increased with increased vent gap spacing. However, a maximum in average Nusselt number was observed for a dimensionless gap spacing of G/W – 0.67 for one of the two dual-heater placement configurations studied. The heat transfer characteristics were compared to those of a single isolated plate and unobstructed parallel-plate channels.  相似文献   

15.
A meshless local Petrov-Galerkin (MLPG) approach is employed for solving the coupled radiative and conductive heat transfer in a one-dimensional slab with graded index media. The angular distribution term in discrete ordinate equation of radiative transfer within a one-dimensional graded index slab is discretized by a step scheme, and the meshless approach for radiative transfer is based on the discrete ordinate equation. A moving least-squares approximation is used to construct the shape function. Two particular test cases for coupled radiative and conductive heat transfer within a one-dimensional graded index slab are examined to verify this new approximate method. The temperatures and the radiative heat fluxes are obtained. The results are compared with the other benchmark approximate solutions. By comparison, the results show that the MLPG approach has a good accuracy in solving the coupled radiative and conductive heat transfer in one-dimensional graded index media.  相似文献   

16.
循环床中气固两相局部传热传质规律的研究   总被引:5,自引:0,他引:5  
本文对含湿颗粒在循环床中干燥过程的传热传质规律进行了实验研究。本文发展的一种利用双热电偶参考标定法,获得了气、固两相沿床高的局部温度。对气体表观流速,固体循环率,颗粒初始含湿量对传热传质的影响进行了分析和讨论。所获得的循环床中传热传质系数的实验关联式,可供干燥颗粒、造粒、粒面包裹等工业设计参考使用。  相似文献   

17.
在水平管外沸腾换热实验中,热流密度沿管长方向的变化幅度较大,采用Wilson方法所得到的管内对流换热系数偏高,而管外沸腾换热系数偏低.为解决这一问题,本文提出了一种新的数据处理方法-局部换热系数法,并采用这种方法对实验测定R134a在水平放置的机械加工强化表面沸腾传热管的实验数据进行分析和处理,得到了较合理的结果.  相似文献   

18.
Natural convection in an internally heated porous bed of height and diameter of 450 mm and 500 mm, respectively, and superposed with the fluid layer has been experimentally investigated. The onset of natural convection in the bed is indicated by change in the rate of temperature rise within the bed. An empirical model based on local Nusselt number and local Rayleigh number has been developed. A comparison of the present model with the models in literature is made to draw out the differences between the local heat transfer of large multidimensional beds and the average heat transfer of small beds.  相似文献   

19.
Combined sonication with dual-frequency ultrasound has been investigated to enhance heat transfer in forced convection. The test section used for this study consists of a channel with, on one hand, heating blocks normal to the water flow, equipped with thermocouples, and, on the other hand, two ultrasonic emitters. One is facing the heating blocks, thus the ultrasonic field is perpendicular, and the second ultrasonic field is collinear to the water flow. Two types of ultrasonic waves were used: low-frequency ultrasound (25 kHz) to generate mainly acoustic cavitation and high-frequency ultrasound (2 MHz) well-known to induce Eckart’s acoustic streaming. A thermal approach was conducted to investigate heat transfer enhancement in the presence of ultrasound. This approach was completed with PIV measurements to assess the hydrodynamic behavior modifications under ultrasound. Sonochemiluminescence experiments were performed to account for the presence and the location of acoustic cavitation within the water flow. The results have shown a synergetic effect using combined low-and-high-frequency sonication. Enhancement of heat transfer is related to greater induced turbulence within the water flow by comparison with single-frequency sonication. However, the ultrasonically-induced turbulence is not homogeneously distributed within the water flow and the synergy effect on heat transfer enhancement depends mainly on the generation of turbulence along the heating wall. For the optimal configuration of dual-frequency sonication used in this work, a local heat transfer enhancement factor up to 366% was observed and Turbulent Kinetic Energy was enhanced by up to 84% when compared to silent regime.  相似文献   

20.
This paper addresses the influence of fuel spray impact on fuel/air mixture for combustion in port-fuel injection engines. The experiments include time resolved measurements of surface temperature synchronized with PDA measurements of droplet dynamics at impact and were conducted to quantify the effects of interactions between successive injections on the mixture preparation for combustion in homogeneous charge compression ignition (HCCI) engines. Analysis shows that, during engine warm up, the heat transfer over the entire valve surface occurs within the vaporization-nucleate-boiling regime and the local instantaneous surface temperature correlates with the dynamics of droplets impacting at the same point. A functional relation is found for the heat transfer coefficient, which also describes other experiments reported in the literature. Similarity does not hold after the engine warms up because heat transfer and droplet vaporization at the surface are dominated by multiple interactions between droplets arisen from diverse heat transfer regimes. However, results evidence the existence of a critical surface temperature which sets a transition between overall heat transfer regimes dominated by local nucleate boiling at lower temperatures and by local intermittent transition regimes at higher temperatures. The heat transfer within the overall nucleate boiling regime is shown to be due to a thin film boiling mechanism leading to breakdown of the liquid-film at a nearly constant surface temperature, regardless of injection frequency or any other spray conditions. While at low frequencies this regime is not limited neither by the delivery of liquid to the surface, nor by the removal of vapour from the surface, at higher frequencies it is triggered by enhanced vaporization induced by piercing and mixing the liquid film. The results further evidence the important role of spray impingement for mixture preparation as required for HCCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号