首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of third-row transition-metal corroles have remained elusive as synthetic targets until now, notably osmium, platinum, and gold corroles. Against this backdrop, we present a simple and general synthesis of β-unsubstituted gold(III) triarylcorroles and the first X-ray crystal structure of such a complex. Comparison with analogous copper and silver corrole structures, supplemented by extensive scalar-relativistic, dispersion-corrected density functional theory calculations, suggests that "inherent saddling" may occur for of all coinage metal corroles. The degree of saddling, however, varies considerably among the three metals, decreasing conspicuously along the series Cu > Ag > Au. The structural differences reflect significant differences in metal-corrole bonding, which are also reflected in the electrochemistry and electronic absorption spectra of the complexes. From Cu to Au, the electronic structure changes from noninnocent metal(II)-corrole(?2-) to relatively innocent metal(III)-corrole(3-).  相似文献   

2.
3.
4.
Spectral properties and chemical stability of Mn(III), Mn(IV), Fe(III), Fe(IV), and Cu(III) complexes of β-octabromotriphenylcorrole [(β-Br)8(ms-Ph)3Cor], synthesized from β-unsubstituted compounds by their reaction with molecular bromine, were studied. Cyclic voltammetry, electron microscopy, and X-ray spectral microanalysis were used to obtain electrochemical characteristics of metal corroles M(β-Br)8(ms-Ph)3Cor and gain insight into the surface texture of active catalysts on the basis of metal corroles. The electron-acceptor β-bromine substitution in the MCor macrocycle shifts the equilibrium in electron-donor solvents to lower oxidation states of the metals and also stabilizes manganese and destabilizes copper complexes in the protondonor medium HOAc-H2SO4. The electrocatalytic activity of the complexes in the reduction of molecular oxygen depends on the nature of the ligand and increases in the order Mn ≤ Cu ? Fe in the case of β-octabrominated macrocycles. The character of distribution of active centers on the surface of the catalysts was established for the first time.  相似文献   

5.
The one-pot corrole synthesis first reported by the Gross and Paolesse groups appears to have evolved into a remarkably general and predictable self-assembly based synthetic reaction. Gross's solvent-free procedure (refs 8 and 9) has proven particularly effective in our hands and, in fact, more general than originally claimed. In earlier work (ref 17), we showed that the reaction works for a variety of aromatic aldehyde starting materials and was not limited to relatively electron-deficient aldehydes, as reported by Gross and co-workers. Here, we show that the pyrrole component is also variable in that 3,4-difluoropyrrole undergoes oxidative condensation with four different p-X-substituted benzaldehydes to yield the corresponding beta-octafluoro-meso-tris(para-X-phenyl)corroles (X = CF3, H, CH3, and OCH3). Further, we have prepared the Cu and FeCl derivatives of the beta-octafluorocorrole ligands. The XPS nitrogen 1s ionization potentials of these fluorinated ligands are some 0.7 eV higher than those of the corresponding beta-unfluorinated ligands. The oxidation half-wave potentials of the Cu and FeCl complexes of the fluorinated corroles are also positively shifted by 300-400 mV relative to their beta-unsubstituted analogues, demonstrating the strongly electron-deficient character of the fluorinated ligands. 1H NMR spectroscopy suggests that like their beta-unfluorinated counterparts, the new beta-octafluorinated triarylcorroles act as substantially noninnocent ligands, i.e., exhibit corrole pi-cation radical character, in the FeCl complexes. Quantitatively, however, NMR spectroscopy and DFT calculations indicate that the beta-octafluorinated corroles are somewhat less noninnocent (i.e., carry less radical character) than their beta-unfluorinated counterparts in the FeCl complexes. Temperature-dependent 19F NMR spectroscopy suggests that the Cu octafluorocorroles have a thermally accessible paramagnetic excited state, which we assign as a Cu(II) corrole pi-cation radical. We have previously reported that the electronic absorption spectra, particularly the Soret absorption maxima, of high-valent transition metal triarylcorroles are very sensitive to the nature of the substituents in the meso positions. In contrast, the Soret absorption maxima of free-base triarylcorroles are not particularly sensitive to the nature of the meso substituents. This scenario also holds for the fluorinated corroles described here. Thus, although the four free-base fluorinated triarylcorroles exhibit practically identical Soret absorption maxima, the Soret bands of the Cu derivatives of the same corroles red-shift by approximately 35 nm on going from the p-CF3 to the p-OCH3 derivative.  相似文献   

6.
In this paper, the results are presented from a comparative study of the electronic and geometric structure of copper corroles by means of either density functional theory (DFT, using both pure and hybrid functionals) and multiconfigurational ab initio methods, starting from either a complete active space (CASSCF) or restricted active space (RASSCF) reference wave function and including dynamic correlation by means of second-order perturbation theory (CASPT2/RASPT2). DFT geometry optimizations were performed for the lowest singlet and triplet states of copper corrole, both unsubstituted and meso-substituted with three phenyl groups. The effect of saddling on the electronic structure was investigated by comparing the results obtained for planar (C(2v)) and saddled (C(2)) structures. With DFT, the origin of the saddling distortion is found to be dependent on the applied functional: covalent Cu 3d-corrole π interactions with pure functionals (BP86, OLYP), antiferromagnetic exchange coupling between an electron in the corrolate (C(2)) b type π orbital, and an unpaired Cu(II) 3d electron with hybrid functionals (B3LYP, PBE0). The CASPT2 results essentially confirm the suggestion from the hybrid functionals that copper corroles are noninnocent, although the contribution of diradical character to the copper-corrole bond is found to be limited to 50% or less. The lowest triplet state is calculated at 0-10 kcal/mol and conform with the experimental observation (variable temperature NMR) that this state should be thermally accessible.  相似文献   

7.
合成了两个中位苯基上具有甲氧基取代基的铜咔咯配合物(Tp-OCH3PC)Cu和(To,p-(OCH3)2PC)Cu,通过紫外-可见、红外光谱、元素分析、核磁共振及质谱对它们进行了表征。研究了配合物在非水溶剂中的电子顺磁共振、电化学和光谱电化学性质,结果表明无论在固体状态还是在非水溶剂中,配合物的中心金属离子均为三价铜Cu(Ⅲ),在给定的溶剂中Cu(Ⅲ)可以发生可逆的还原反应生成Cu(Ⅱ),也可以被可逆氧化为Cu(Ⅲ)的阳离子自由基。探讨了甲氧基取代基以及溶剂对配合物的紫外-可见光谱和氧化还原电位的影响。  相似文献   

8.
Gu ZG  Liu W  Yang QF  Zhou XH  Zuo JL  You XZ 《Inorganic chemistry》2007,46(8):3236-3244
Two tricyanometallate precursors, (Bu4N)[(Tp4Bo)Fe(CN)3].H2O.2MeCN (1) and (Bu4N)[(pzTp)Fe(CN)3] (2) [Bu4N+ = tetrabutylammonium cation; Tp4Bo = tris(indazolyl)hydroborate; pzTp = tetrakis(pyrazolyl)borate], with a low-spin FeIII center have been synthesized and characterized. The reactions of 1 or 2 with [Cu(Me3tacn)(H2O)2](ClO4)2 (Me3tacn = N,N',N' '-trimethyl-1,4,7-triazacyclononane) afford two pentanuclear cyano-bridged clusters, [(Tp4Bo)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.5H2O (3) and [(pzTp)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.4H2O (4), respectively. Assembly reactions between 2 and [Ni(phen)(CH3OH)4](ClO4)2 (phen = 1,10-phenanthroline) or Zn(OAc)2.2H2O afford a molecular box [(pzTp)4(phen)4Ni4Fe4(CH3OH)4(CN)12](ClO4)4.4H2O (5) and a rectangular cluster [(pzTp)2Zn2Fe2(OAc)2(H2O)2(CN)6] (6). Their molecular structures were determined by single-crystal X-ray diffraction. In complexes 1 and 2, the central FeIII ions are coordinated by three cyanide carbon atoms and three nitrogen atoms of Tp4Bo- or pzTp-. Both complexes 3 and 4 show a trigonal-bipyramidal geometry, in which [(L)Fe(CN)3]- units occupy the apical positions and are linked through cyanide to [Cu(Me3tacn)]2+ units situated in the equatorial plane. Complex 5 possesses a cubic arrangement of eight metal irons linked through edge-spanning cyanide bridges, while complex 6 shows Zn2Fe2(CN)4 rectangular structure, in which FeIII and ZnII ions are alternately bridged by the cyanide groups. Intramolecular ferromagnetic couplings are observed for complexes 3-5, and they have S = 5/2, 5/2, and 6 ground states and appreciable magnetic anisotropies with negative D values equal to -0.49, -2.39, and -0.39 cm-1, respectively.  相似文献   

9.
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown-6){Cp*Fe(η(4)-C(10)H(8))}] (K1), [K(18-crown-6){Cp*Fe(η(4)-C(14)H(10))}] (K2), [Cp*Fe(η(4)-C(10)H(8))] (1), and [Cp*Fe(η(4)-C(14)H(10))] (2) were synthesized and characterized by NMR, UV-vis, and (57)Fe M?ssbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η(4)-C(10)H(8))](-) (1(-)) and [Cp*Fe(η(4)-C(14)H(10))](-) (2(-)) and reversibly oxidized to the cations [Cp*Fe(η(6)-C(10)H(8))](+) (1(+)) and [Cp*Fe(η(6)-C(14)H(10))](+) (2(+)). Reduced orbital charges and spin densities of the naphthalene complexes 1(-/0/+) and the anthracene derivatives 2(-/0/+) were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1(-) and 2(-) are best represented by low-spin Fe(II) ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin Fe(I) ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin Fe(II) ion coordinated to a ligand radical L(?-). Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.  相似文献   

10.
Z Okun  Z Gross 《Inorganic chemistry》2012,51(15):8083-8090
In order to determine the electronic factors that may affect the catalytic antioxidant activity of water-soluble metallocorroles a series of 10-aryl-5,15-pyridinium manganese(III) corroles was prepared. These complexes were examined regarding the effect of the C(10) substituent on the Mn(IV)/Mn(III) redox potentials, catalytic rate constants for decomposition of HOONO, prevention of tyrosine nitration, and superoxide dismutase activity. This structure-activity relationship investigation provides new insight regarding the mechanism by which manganese(III) corroles act as catalytic antioxidants. It also discloses the superiority of the C(10)-anysil-substituted complex in all examined aspects.  相似文献   

11.
X-ray structures of Co(III)[(CF(3))(3)Cor](PPh(3)) [(CF(3))(3)Cor = meso-tris(trifluoromethyl)corrolato] and Cu[(CF(3))(4)Por] [(CF(3))(4)Por = meso-tetrakis(trifluoromethyl)porphyrinato] revealed planar and highly ruffled macrocycle conformations, respectively, in line with analogous observations for a handful of other meso-perfluoroalkylated porphyrins and corroles reported in the literature. To gain insights into the difference in conformational behavior, we evaluated DFT (BP86-D/TZP) ruffling potentials for a variety of corrole complexes, as well as their porphyrin analogues. The calculations led us to conclude that corrole derivatives, in essence, cannot ruffle.  相似文献   

12.
As part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor. The oxidation state of the vanadium center in 1 was shown to be +4, in agreement with the overall neutral charge for this complex. The EPR spectrum of 1 reveals a rich signal consistent with a V(IV)(O) (d(1), S = 1/2) porphyrinoid species (g(xx) = 1.989, g(yy) = 1.972, g(zz) = 1.962). The electrochemical analysis of 1 shows behavior closer to that of a porphyrazine than a corrolazine, with a positively shifted, irreversible reduction at -0.65 V (vs Ag/AgCl). Resonance Raman and IR data for 1 confirm the presence of a triply bonded terminal oxo ligand with nu(V(16)O) = 975 cm(-1) and nu(V(18)O) = 939 cm(-1). The copper complex 2 exhibits a diamagnetic (1)H NMR spectrum, indicative of a bona fide square planar copper(III) (d(8), low-spin) complex. Previously reported copper corroles have been characterized as copper(III) complexes which exhibit a paramagnetic NMR spectrum at higher temperatures, indicative of a thermally accessible triplet excited state ([(corrole(*+))Cu(II)]). The NMR spectrum for 2 shows no paramagnetic behavior in the range 300-400 K, indicating that compound 2 does not have a thermally accessible triplet excited state. These data show that the corrolazine system is better able to stabilize the high oxidation state copper center than the corresponding corroles. Electrochemical studies of 2 reveal two reversible processes at +0.93 and -0.05 V, and bulk reduction of 2 with NaBH(4) generates the copper(II) species [(TBP)(8)CzCu(II)](-) (2a), which exhibits an EPR signal typical of a copper(II) porphyrinoid species.  相似文献   

13.
Seven new cyano-bridged heterometallic systems have been prepared by assembling [M'(rac-CTH)]n+ complexes (M' = CrIII, NiII, CuII), which have two cis available coordination positions, and [M(CN)6]3- (M = FeIII, CrIII) and [Fe(CN)2(bpy)2]+ cyanometalate building blocks. The assembled systems, which have been characterized by X-ray crystallography and magnetic investigations, are the molecular squares (meso-CTH-H2)[{Ni(rac-CTH)}2{Fe(CN)6)}2].5H2O (2) and [{Ni(rac-CTH)}2{Fe(CN)2(bpy)2}2](ClO4)4.H2O (5), the bimetallic chain [{Ni(rac-CTH)}2{Cr(CN)6)}2Ni(meso-CTH)].4H2O (3), the trimetallic chain [{Ni(rac-CTH)}2{Fe(CN)6)}2Cu(cyclam)]6H2O (4), the pentanuclear complexes [{Cu(rac-CTH}3{Fe(CN)6}2].2H2O (6) and [{Cu(rac-CTH)}3{Cr(CN)6)}2].2H2O (7), and the dinuclear complex [Cr(rac-CTH)(H2O)Fe(CN)6].2H2O (8). With the exception of 5, all compounds exhibit ferromagnetic interaction between the metal ions (JFeNi = 12.8(2) cm-1 for 2; J1FeCu= 13.8(2) cm-1 and J2FeCu= 3.9(4) cm-1 for 6; J1CrCu= 6.95(3) cm-1 and J2CrCu= 1.9(2)cm-1 for 7; JCrFe = 28.87(3) cm-1 for 8). Compound 5 exhibits the end of a transition from the high-spin to the low-spin state of the octahedral FeII ions. The bimetallic chain 3 behaves as a metamagnet with a critical field Hc = 300 G, which is associated with the occurrence of week antiferromagnetic interactions between the chains. Although the trimetallic chain 4 shows some degree of spin correlation along the chain, magnetic ordering does not occur. The sign and magnitude of the magnetic exchange interaction between CrIII and FeIII in compound 8 have been justified by DFT type calculations.  相似文献   

14.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

15.
The mechanism by which [Cu(II)(L)](OTf)2 and [Cu(II)N3(L)](OTf) (L = TEPA: tris(2-pyridylethyl)amine or TMPA: tris(2-pyridylmethyl)amine; OTf = trifluoromethanesulfonate) react with superoxide (O2*-) to form [Cu(I)(L)](OTf) and O2 is described. Evidence for a CuO2 intermediate is presented based on stopped-flow experiments and competitive oxygen (18O) kinetic isotope effects on the bimolecular reactions of (16,16)O2*- and (18,16)O2*- ((16,16)k/(18,16)k). The (16,16)k/(18,16)k fall within a narrow range from 0.9836 +/- 0.0043 to 0.9886 +/- 0.0078 for reactions of copper(II) complexes with different coordination geometries and redox potentials that span a 0.67 V range. The results are inconsistent with a mechanism that involves either rate-determining O2*- binding or one-step electron transfer. Rather a mechanism involving formation of a CuO2 intermediate prior to the loss of O2 in the rate-determining step is proposed. Calculations of similar inverse isotope effects, using stretching frequencies of CuO2 adducts generated from copper(I) complexes and O2, suggest that the intermediate has a superoxo structure. The use of 18O isotope effects to relate activated oxygen intermediates in enzymes to those derived from inorganic compounds is discussed.  相似文献   

16.
This study details the electronic structure of the heme–peroxo–copper adduct {[(F8)Fe(DCHIm)]-O2-[Cu(AN)]}+ (LS(AN)) in which O2(2–) bridges the metals in a μ-1,2 or “end-on” configuration. LS(AN) is generated by addition of coordinating base to the parent complex {[(F8)Fe]-O2-[Cu(AN)]}+ (HS(AN)) in which the O2(2–) bridges the metals in an μ-η2:η2 or “side-on” mode. In addition to the structural change of the O2(2–) bridging geometry, coordination of the base changes the spin state of the heme fragment (from S = 5/2 in HS(AN) to S = 1/2 in LS(AN)) that results in an antiferromagnetically coupled diamagnetic ground state in LS(AN). The strong ligand field of the porphyrin modulates the high-spin to low-spin effect on Fe–peroxo bonding relative to nonheme complexes, which is important in the O–O bond cleavage process. On the basis of DFT calculations, the ground state of LS(AN) is dependent on the Fe–O–O–Cu dihedral angle, wherein acute angles (<~150°) yield an antiferromagnetically coupled electronic structure while more obtuse angles yield a ferromagnetic ground state. LS(AN) is diamagnetic and thus has an antiferromagnetically coupled ground state with a calculated Fe–O–O–Cu dihedral angle of 137°. The nature of the bonding in LS(AN) and the frontier molecular orbitals which lead to this magneto-structural correlation provide insight into possible spin topology contributions to O–O bond cleavage by cytochrome c oxidase.  相似文献   

17.
The electronic structure of the [Cu(3)S(2)](3+) core of [(LCu)(3)(S)(2)](3+) (L = N,N,N',N'-tetramethyl-2R,3R-cyclohexanediamine) is investigated using a combination of Cu and S K-edge X-ray absorption spectroscopy and calculations at the density functional and multireference second-order perturbation levels of theory. The results show that the [Cu(3)S(2)](3+) core is best described as having all copper centers close to but more oxidized than Cu(2+), while the charge on the S(2) fragment is between that of a sulfide (S(2-)) and a subsulfide (S(2)(3-)) species. The [Cu(3)S(2)](3+) core thus is different from a previously described, analogous [Cu(3)O(2)](3+) core, which has a localized [(Cu(3+)Cu(2+)Cu(2+))(O(2-))(2)](3+) electronic structure. The difference in electronic structure between the two analogues is attributed to increased covalent overlap between the Cu 3d and S 3p orbitals and the increased radial distribution function of the S 3p orbital (relative to O 2p). These features result in donation of electron density from the S-S σ* to the Cu and result in some bonding interaction between the two S atoms at ~2.69 ? in [Cu(3)S(2)](3+), stabilizing a delocalized S = 1 ground state.  相似文献   

18.
Single wavelength excitation (lambdaex = 355 or 532 nm) of low-temperature stabilized (198 K) synthetic heme-dioxygen and heme-dioxygen/M complexes, where M = copper or iron in a non-heme environment, results in the dissociation of dioxygen as indicated by the generation of the ferrous heme (Soret band, 427 nm) and the bleaching of the ferric-superoxide (FeIII(O2-)) 410-nm Soret band in the transient absorption difference spectrum. Dioxygen rebinds to the four heme complexes studied with comparable rate constants ( approximately 6-9 x 105 M-1 s-1). However, the quantum yield for complete dissociation of O2 from our simplest heme-O2 complex (F8)FeIII(O2-) (phi = 0.60) is higher than the other complexes measured (phi = approximately 0.2-0.3) as well as that for oxy-myoglobin (phi = 0.3).  相似文献   

19.
Four new Fe(III) catecholate complexes, [(bispicMe2en)FeIII(DBC)]+, [(bispicCl2Me2en)FeIII(DBC)]+, [(trispicMeen)FeIII(DBC)]+, and [(BQPA)FeIII(DBC)]+, which all contain aminopyridine ligands, were synthesized. The structure of [(bispicMe2en)FeIII(DBC)]+ was determined by X-ray diffraction. It crystallizes in the triclinic space group P1 with a = 10.666(3) A, b = 13.467(5) A, c = 17.685(2) A, alpha = 93.46(2) degrees, beta = 93.68(2) degrees, gamma = 109.0(3) degrees, V = 2387.4 A3, and Z = 2. All of these complexes were found to be active toward oxidation of catechol by O2 in DMF at 20 degrees C to afford intradiol cleavage products. The catechol was quantitatively oxidized, mainly (90%) into 3,5-di-tert-butyl-5-(carboxymethyl)-2-furanone. Reaction rates were measured, and for the first three (topologically similar) complexes, a correlation of the second-order kinetic constants k with the optical parameters of the two LMCT O(DBC)-->Fe(III) bands was found. In particular, k increases with the epsilon max of the charge-transfer bands. The k value of the complex [(BQPA)FeIII(DBC)]+, containing a tripodal ligand, is smaller than expected on the basis of these correlations. This discrepancy could be related to steric hindrance induced by the BQPA ligand. However, the much lower activity of the bispicen-Fe(III)-type complexes compared to that of the [(TPA)FeIII(DBC)]+ complex synthesized by Jang et al. (J. Am. Chem. Soc. 1991, 113, 9200-9204), despite similar epsilon max values, shows that a knowledge of optical and NMR parameters values is not sufficient to explain the dioxygenase activity rate. In their study of protocatechuate 3,4-dioxygenase, Orville et al. (Biochemistry 1997, 36, 10052-10066) suggested that asymmetric chelation of the catecholate to Fe(III) is of great importance in the efficiency of the intradiol dioxygenase reaction. Indeed, a comparison of the X-ray structures of [(TPA)FeIII(DBC)]+ and [(bispicMe2en)FeIII(DBC)]+ shows that the Fe(III)-O bonds differ by 0.019 A in the former and are identical in the latter. Asymmetry could also play a role in the model complexes. An alternative explanation is the possible existence of a low-spin state for [(TPA)FeIII(DBC)]+, as recently identified in [(TPA)FeIII(cat)]+ by Simaan et al.  相似文献   

20.
We report the synthesis, by solvothermal methods, of the tetradecametallic cluster complexes [M14(L)6O6(OMe)18Cl6] (M=FeIII, CrIII) and [V14(L)6O6(OMe)18Cl6-xOx] (L=anion of 1,2,3-triazole or derivative). Crystal structure data are reported for the {M14} complexes [Fe14(C2H2N3)6O6(OMe)18Cl6], [Cr14(bta)6O6(OMe)18Cl6] (btaH=benzotriazole), [V14O6(Me2bta)6(OMe)18Cl6-xOx] [Me2btaH=5,6-Me2-benzotriazole; eight metal sites are VIII, the remainder are disordered between {VIII-Cl}2+ and {VIV=O}2+] and for the distorted [FeIII14O9(OH)(OMe)8(bta)7(MeOH)5(H2O)Cl8] structure that results from non-solvothermal synthetic methods, highlighting the importance of temperature regime in cluster synthesis. Magnetic studies reveal the {Fe14} complexes to have ground state electronic spins of S相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号