首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclodextrin glucanotransferase production from Bacillus clausii E16, a new bacteria isolated from Brazilian soil samples was optimized in shake-flask cultures. A 2(4) full-factorial central composite design was performed to optimize the culture conditions, using a response surface methodology. The combined effect among the soluble starch concentration, the peptone concentration, the yeast extract concentration, and the initial pH value of the culture medium was investigated. The optimum concentrations of the components, determined by a 2(4) full-factorial central composite design, were 13.4 g/L soluble starch, 4.9 g/L peptone, 5.9 g/L yeast extract, and initial pH 10.1. Under these optimized conditions, the maximum cyclodextrin glucanotransferase activity was 5.9 U/mL after a 48-h fermentation. This yield was 68% higher than that obtained when the microorganism was cultivated in basal culture medium.  相似文献   

2.
In the present work, interactions between common media components and fermentation conditions were explored to come up with a simple media recipe for extracellular β-glucosidase (Dβ-gl) synthesis from Debaryomyces pseudopolymorphus to substitute cellobiose, which is currently used as a sole carbon source. Taguchi L25 orthogonal array design was used to screen factors influencing Dβ-gl synthesis (carbon, organic nitrogen, inorganic nitrogen, trace elements, inoculum volume, and fermentation time). A significant influence of xylose, peptone, and potassium nitrate as carbon, organic nitrogen, and inorganic nitrogen sources, respectively, on Dβ-gl synthesis was identified by Taguchi. These factors were further optimized using central composite rotatable design (CCRD) of response surface methodology (RSM). The results showed that in the range studied, potassium nitrate had insignificant effect while xylose, peptone, and xylose-peptone interaction had a significant effect on Dβ-gl synthesis. Peptone/xylose ratio of 1.33 was found to be an important parameter for inducing Dβ-gl synthesis. The regression coefficient (R 2) of 0.915 and P value of <0.0003 for the model indicated that it was highly significant. The maximum activity obtained after RSM (32.2 U/ml) was comparable with that obtained (68.8 U/ml) when cellobiose (20 g/l) was used as a sole carbon source. Considering the cost difference between xylose and cellobiose, a 16-fold cost reduction could be obtained for equivalent Dβ-gl yield. Fed-batch fermentations were carried out wherein peptone/xylose ratio of 1.33 was maintained and continuous Dβ-gl synthesis was observed.  相似文献   

3.
A statistical approach, response surface methodology (RSM), was used to study the production of extracellular protease fromBacillus sp., which has properties of immense industrial importance. The most influential parameters for protease production obtained through the method of testing the parameters one at a time were starch, soybean meal, CaCl2, agitation rate, and inoculum density. This method resulted in the production of 2543 U/mL of protease in 48 h fromBacillus sp. Based on these results, face-centered central composite design falling under RSM was employed to further enhance protease activity. The interactive effect of the most influential parameters resulted in a 1.50-fold increase in protease production, yielding 3746 U/mL in 48 h. Analysis of variance showed the adequacy of the model and verification experiments confirmed its validity. On subsequent scale-up in a 30-L bioreactor using conditions optimized through RSM, 3978 U/mL of protease was produced in 18 h. This clearly indicated that the model remained valid even on a large scale. RSM is a quick process for optimization of a large number of variables and provides profound insight into the interactive effect of various parameters involved in protease production.  相似文献   

4.
The production of cellulolytic enzymes by the fungus Aspergillus phoenicis was investigated. Grape waste from the winemaking industry was chosen as the growth substrate among several agro-industrial byproducts. A 2 × 2 central composite design was performed, utilizing the amount of grape waste and peptone as independent variables. The fungus was cultivated in submerged fermentation at 30 °C and 120 rpm for 120 h, and the activities of total cellulases, endoglucanases, and β-glucosidases were measured. Total cellulases were positively influenced by the linear increase of peptone concentration and decrease at axial concentrations of grape waste and peptone. Maximum activity of endoglucanase was observed by a linear increase of both grape waste and peptone concentrations. Concentrations of grape waste between 5 and 15 g/L had a positive effect on the production of β-glucosidase; peptone had no significant effects. The optimum production of the three cellulolytic activities was observed at values near the central point. A. phoenicis has the potential for the production of cellulases utilizing grape waste as the growth substrate.  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are thermoplastic polyesters synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and are accumulated as lipid inclusions in the cytoplasm of these bacteria. The modeling and optimization of PHA production by fermentation from industrial waste (ice cream residue) was studied by employing statistical experimental design methods. A series of iterative experimental designs was used to find optimal factor conditions (medium components and fermentation process time) in the order of fractional factorial design, path of steepest ascent, and full factorial augmented with axial design (rotational central composite design). An optimal range characterized by lipid (15 mg/mL) and % lipid (88%) values was found and further investigated to verify the optimal conditions for PHA production from ice cream (56.68 mL of ice cream or 56.68% ice cream in water [v/v], 5.03 mL of buffer, 1 mL of mineral salts solution, 100 muL of trace element solution, 100 mL of seed culture, and 213.76 h of fermentation time).  相似文献   

6.
Plackett and Burman design criterion and central composite design were applied successfully for enhanced production of laccase by Coriolus versicolor NCIM 996 for the first time. Plackett and Burman design criterion was applied to screen the significance of ten nutrients on laccase production by C. versicolor NCIM 996. Out of the ten nutrients tested, starch, yeast extract, MnSO(4), MgSO(4) x 7H(2)O, and phenol were found to have significant effect on laccase production. A central composite design was applied to determine the optimum concentrations of the significant variables obtained from Plackett-Burman design. The optimized medium composition for production of laccase was (g/l): starch, 30.0; yeast extract, 4.53; MnSO(4), 0.002; MgSO(4) x 7H(2)O, 0.755; and phenol, 0.026, and the optimum laccase production was 6,590.26 (U/l), which was 7.6 times greater than the control.  相似文献   

7.
Factorial design and response surface techniques were used to optimize the culture medium for the production of inulinase by Kluyveromyces marxianus. Sucrose was used as the carbon source instead of inulin. Initially, a fractional factorial design (25–1) was used in order to determine the most relevant variables for enzyme production. Five parameters were studied (sucrose, peptone, yeast extract, pH, and K2HPO4), and all were shown to be significant. Sucrose concentration and pH had negative effects on inulinase production, whereas peptone, yeast extract, and K2HPO4 had positive ones. The pH was shown to be the most significant variable and should be preferentially maintained at 3.5. According to the results from the first factorial design, sucrose, peptone, and yeast extract concentrations were selected to be utilized in a full factorial design. The optimum conditions for a higher enzymatic activity were then determined: 14 g/L of sucrose, 10 g/L of yeast extract, 20 g/L of peptone, 1 g/L of K2HPO4. The enzymatic activity in the culture conditions was 127 U/mL, about six times higher than before the optimization.  相似文献   

8.
The present study aimed at maximizing cellulase production by Penicillium funiculosum using sequential experimental design methodology for optimizing the concentrations of nitrogen sources. Three sequential experimental designs were performed. The first and the second series of experiments consisted of a 24 and a 23 factorial designs, respectively, and in the third one, a central composite rotational design was used for better visualizing the optimum conditions. The following nitrogen sources were evaluated: urea, ammonium sulfate, peptone, and yeast extract. Peptone and ammonium sulfate were removed from the medium optimization since they did not present significant statistical effect on cellulase production. The optimal concentrations of urea and yeast extract predicted by the model were 0.97 and 0.36 g/L, respectively, which were validated experimentally. By the use of the desirability function, it was possible to maximize the three main enzyme activities simultaneously, which resulted in values for FPase of 227 U/L, for CMCase of 6,917 U/L, and for β-glucosidase of 1,375 U/L. These values corresponded to increases of 3.3-, 3.2-, and 6.7-folds, respectively, when compared to those obtained in the first experimental design. The results showed that the use of sequential experimental designs associated to the use of the desirability function can be used satisfactorily to maximize cellulase production by P. funiculosum.  相似文献   

9.
Biocompatible gold nanoparticles have received considerable attention in recent years because of their promising applications in bioimaging, biosensors, biolabels, and biomedicine. The generation of gold nanoparticles using extra-cellular α-amylase for the reduction of AuCl4 with the retention of enzymatic activity in the complex is being reported. The enhanced synthesis of particles has been brought about by optimizing the medium components for α-amylase. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of α-amylase by Bacillus licheniformis at pH 8. The three variables involved in the study of α-amylase were fructose, peptone and soya meal. Only fructose had a significant effect on α-amylase production. The most optimum medium (medB) containing (%) fructose: 3, peptone: 1, soya meal: 2, resulted in a amylase activity of 201.381 U/ml which is same as that of the central level. The least optimum (medA) and most optimum (medB) media were compared for the synthesis of particles indicated by difference in color formation. Spectrophotometric analysis revealed that the particles exhibited a peak at 582 nm and the A582 for the Med B was 8-fold greater than that of the Med A. The TEM analysis revealed that the particle size ranged from 10 to 50 nm.  相似文献   

10.
The effect of polypeptide fractions of proteose peptone on the induction of cloned gene expression of rice α-amylase in recombinantYarrowia lipolytica which is under the control of itsXPR2 promoter, was studied. Gel-filtration chromatography with Sephacryl S-100 and Sephadex G-25 (coarse) gels was used to fractionate the active polypeptide fractions from the proteose peptone. The polypeptide size fractions that were effective for the induction of cloned gene expression ranged between mol wt of 1.0 and 6.0 kDa. The fed-batch culture experiments with active polypeptide fractions were performed in a 6-L fermenter. The specific productivity of α-amylase and the enzyme yield based on nitrogen source increased from 25.7 to 33.0 U/g cell·h and 4.96 to 6.73 U/(mg nitrogen consumed), respectively, when proteose peptone was replaced by active polypeptide fractions in production medium. The specific productivity of α-amylase and the enzyme yield further improved to 36.2 U/g cell·h and 8.14 U/(mg nitrogen consumed), respectively, when the glutamic acid-enriched active polypeptide fractions in the production medium was used. The specific productivity of α-amylase and the enzyme yield were improved by 41 and 64%, respectively, as compared with the results obtained with the medium containing proteose peptone. Through medium design, a bioprocess strategy for heterologous protein production was developed and a significant productivity improvement achieved.  相似文献   

11.
A two-step response surface methodology (RSM) study was conducted for the optimization of keratinase production and enzyme activity from poultry feather byStreptomyces sp7. Initially different combinations of salts were screened for maximal production of keratinase at a constant pH of 6.5 and feather meal concentration of 5 g/L. A combination of K2HPO4, KH2PO4, and NaCl gave a maximum yield of keratinase (70.9 U/mL) production. In the first step of the RSM study, the selected five variables (feather meal, K2HPO4, KH2PO4, NaCl, and pH) were optimized by a 25 full-factorial rotatable central composite design (CCD) that resulted in 95 U/mL of keratinase production. The results of analysis of variance and regression of a second-order model showed that the linear effects of feather meal concentration (p<0.005) and NaCl (p<0.029) and the interactive effects of all variables were more significant and that values of the quadratic effects of feather meal (p<1.72e-5), K2HPO4 (p<4.731e-6), KH2PO4 (p<1.01e-10), and pH (p 7.63e-7) were more significant than the linear and interactive effects of the process variables. In the second step, a 23 rotatable full-factorial CCD and response surface analysis were used for the selection of optimal process parameters (pH, temperature, and rpm) for keratinase enzyme activity. These optima were pH 11.0, 45°C, and 300 rpm.  相似文献   

12.
The production of dextransucrase from Leuconostoc mesenteroides NRRL B-640 was investigated using statistical approaches. Plackett-Burman design with six variables, viz. sucrose, yeast extract, K(2)HPO(4), peptone, beef extract, and Tween 80, was used to screen the nutrients that significantly affected the dextransucrase production. 2(4)-Central composite design with four selected variables (sucrose, K(2)HPO(4), yeast extract, and beef extract) was used for response surface methodology (RSM) for optimizing the enzyme production. The culture was grown under flask culture with 100 ml optimized medium containing 30 g/l sucrose, 18.5 g/l yeast extract, 15.3 g/l K(2)HPO(4), and 5 g/l beef extract at 25 degrees C and shaking at 200 rpm gave dextransucrase with specific activity of 0.68 U/mg. Whereas the same optimized medium in a 3.0-l bioreactor (1.4 l working volume) gave an experimentally determined value of specific activity of 0.70 U/mg, which was in perfect agreement with the predicted value of 0.65 U/mg by the statistical model.  相似文献   

13.
Tannase production by solid state fermentation of cashew apple bagasse   总被引:3,自引:0,他引:3  
The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (g(ds)). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/g(ds)) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/g(ds) and enzyme productivity of 128.5x10(-3) U x g(ds)(-1) x h(-1).  相似文献   

14.
Soil contaminated with vegetable cooking oil was used in the isolation of a lipase-producing microorganism. The effectiveness of two different statistical design techniques in the screening and optimization of media constituents for enhancing the lipolytic activity of the soil microorganism was determined. The media constituents for lipase production by the isolated soil microorganism were screened using a Plackett-Burman design. Oil, magnesium sulfate, and ferrous sulfate were found to influence lipolytic activity at 24 and 72 h of culture with very high confidence levels. Whereas oil and ferrous sulfate showed a positive effect, magnesium sulfate indicated a negative effect on the lipolytic activity. A central composite design (CCD) followed by response surface methodology was used in optimizing these media constituents for enhancing the lipolytic activity. The regression model obtained for 72 h of lipolytic activity was found to be the best fit, with R 2=0.97, compared with the other model. An optimum combination at 9.3 mL/L of oil, 0.311 g/L of magnesium sulfate, and 0.007 g/L of ferrous sulfate in the media gave a maximum measured lipolytic activity of 7.1 U/mL at 72 h of culture. This increase in lipolytic activity was found to be 10.25% higher than the maximum experimentally observed value in the CCD.  相似文献   

15.
An attempt was made to develop a computational model based on artificial neural network and ant colony optimization to estimate the composition of medium components for maximizing the productivity of Penicillin G Acylase (PGA) enzyme from Escherichia coli DH5α strain harboring the plasmid pPROPAC. As a first step, an artificial neural network (ANN) model was developed to predict the PGA activity by considering the concentrations of seven important components of the medium. Design of experiments employing central composite design technique was used to obtain the training samples. In the second step, ant colony optimization technique for continuous domain was employed to maximize the PGA activity by finding the optimal inputs for the developed ANN model. Further, the effect of a combination of ant colony optimization for continuous domain with a preferential local search strategy was studied to analyze the performance. For a comparative study, the training samples were fed into the response surface methodology optimization software to maximize the PGA production. The obtained PGA activity (56.94 U/mL) by the proposed approach was found to be higher than that of the obtained value (45.60 U/mL) with the response surface methodology. The optimum solution obtained computationally was experimentally verified. The observed PGA activity (55.60 U/mL) exhibited a close agreement with the model predictions.  相似文献   

16.
The objective of this study was to optimize, by employing a central composite rotatable design, and validate an analytical method to detect and quantify monoaromatic compounds (benzene, toluene, ethylbenzene, and xylenes) in waters and wastewaters by using headspace extraction followed by GC coupled with photoionization detection. The extraction parameters optimized were: salinity, sample volume, incubation time, and extraction temperature. The results revealed that the sample volume was the most significant parameter in the extraction process, whereas the salinity effect was negligible, which extends the applicability of the analytical method to waters with different salinities. Finally, the studied method was very selective and, at the optimal extraction conditions (15 mL sample volume, 15 min incubation time, and temperature of 70°C), presented excellent repeatability (<4%), linearity (R > 0.999 for each compound), and sensitivity, since very low LODs (0.13–0.48 μg/L) and LOQs (0.43–1.61 μg/L) were achieved.  相似文献   

17.
Dwinna Rahmi 《Talanta》2007,72(2):600-606
The multielement determination of trace metals in seawater was carried out by inductively coupled plasma mass spectrometry (ICP-MS) with aid of a down-sized chelating resin-packed minicolumn for preconcentration. The down-sized chelating resin-packed minicolumn was constructed with two syringe filters (DISMIC 13HP and Millex-LH) and an iminodiacetate chelating resin (Chelex 100, 200-400 mesh), with which trace metals in 50 mL of original seawater sample were concentrated into 0.50 mL of 2 M nitric acid, and then 100-fold preconcentration of trace metals was achieved. Then, 0.50 mL analysis solution was subjected to the multielement determination by ICP-MS equipped with a MicroMist nebulizer for micro-sampling introduction. The preconcentration and elution parameters such as the sample-loading flow rate, the amount of 1 M ammonium acetate for elimination of matrix elements, and the amount of 2 M nitric acid for eluting trace metals were optimized to obtain good recoveries and analytical detection limits for trace metals. The analytical results for V, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb, and U in three kinds of seawater certified reference materials (CRMs; CASS-3, NASS-4, and NASS-5) agreed well with their certified values. The observed values of rare earth elements (REEs) in the above seawater CRMs were also consistent with the reference values. Therefore, the compiled reference values for the concentrations of REEs in CASS-3, NASS-4, and NASS-5 were proposed based on the observed values and reference data for REEs in these CRMs.  相似文献   

18.
研究了纯化的超嗜热酯酶APE1547的稳定性. 结果表明, 该酶的稳定性非常好, 蛋白的质量浓度为0.4 mg/mL时, 90 ℃的半衰期为20 h, 0.2 mg/mL时的半衰期为12 h; 而蛋白的质量浓度为0.04 mg/mL时, 保温2.5 h时残余活力仍在50%以上. 同时还研究了热变性时该酶表面疏水氨基酸的变化. 该酶的pH稳定性也很好, pH在6.5-9.0范围内作用24 h, 酶依然很稳定, 残余酶活力大于93%; 同时该酶还具有很强的耐有机溶剂的特性.  相似文献   

19.
Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, oliveoil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.  相似文献   

20.
Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号