首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate a compact, low cost and practical fluorescence detection system for lab-on-a-chip applications. The system comprises a commercially available InGaN light emitting diode (501 nm) as light source, an organic or silicon photodiode detector, absorptive dye coated colour filters and linear and reflective polarisers. An injection moulded polystyrene microfluidic chip is used as the platform for fluorescence immunoassays for cardiac markers myoglobin and CK-MB. The optical limit of detection (LOD) is measured using a TransFluoSphere? suspension at 5.6 × 10(4) beads μl(-1) which can be equated to ~3 nM fluorescein equivalent concentration. The LOD for the human plasma immunoassays is measured as 1.5 ng ml(-1) for both myoglobin and CK-MB.  相似文献   

2.
Puleo CM  Yeh HC  Liu KJ  Wang TH 《Lab on a chip》2008,8(5):822-825
The recent proliferation of platforms designed to handle arrays of nano- and picolitre volumes is in response to the need to perform biological assays on discrete entities, such as single cells. However, a critical challenge associated with this trend for in vitro compartmentalization is the need for highly sensitive, yet low-volume detection platforms. In this paper, we coupled confocal fluorescence detection with recirculating microfluidic control to perform single particle DNA assays within five nL chambers. The performance of this low-volume assay was shown to match that of traditional single molecule detection platforms. However, volume requirements per measurement were nearly 3 orders of magnitude less than conventional systems, enabling future integration with lab-on-a-chip systems that require discrete or digitalized sample processing.  相似文献   

3.
J B Edel  E K Hill  A J de Mello 《The Analyst》2001,126(11):1953-1957
This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.  相似文献   

4.
Li W  Chen T  Chen Z  Fei P  Yu Z  Pang Y  Huang Y 《Lab on a chip》2012,12(9):1587-1590
We designed and fabricated a novel microfluidic device that can be operated through simple finger squeezing. On-chip microfluidic flow control is enabled through an optimized network of check-valves and squeeze-pumps. The sophisticated flow system can be easily constructed by combining a few key elements. We implemented this device to perform quantitative biochemical assays with no requirement for precision instruments.  相似文献   

5.
This paper presents the development and characterization of an integrated microfluidic biochemical detection system for fast and low-volume immunoassays using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Microfluidic components have been developed and integrated to construct a microfluidic biochemical detection system. Magnetic bead-based immunoassay, as a typical example of biochemical detection and analysis, has been successfully performed on the integrated microfluidic biochemical analysis system that includes a surface-mounted biofilter and electrochemical sensor on a glass microfluidic motherboard. Total time required for an immunoassay was less than 20 min including sample incubation time, and sample volume wasted was less than 50 microl during five repeated assays. Fast and low-volume biochemical analysis has been successfully achieved with the developed biofilter and immunosensor, which is integrated to the microfluidic system. Such a magnetic bead-based biochemical detection system, described in this paper, can be applied to protein analysis systems.  相似文献   

6.
The development of a microfluidic biosensor module with fluorescence detection for the identification of pathogenic organisms and viruses is presented in this article. The microfluidic biosensor consists of a network of microchannels fabricated in polydimethylsiloxane (PDMS) substrate. The microchannels are sealed with a glass substrate and packed in a Plexiglas housing to provide connection to the macro-world and ensure leakage-free flow operation. Reversible sealing permits easy disassembly for cleaning and replacing the microfluidic channels. The fluidic flow is generated by an applied positive pressure gradient, and the module can be operated under continuous solution flow of up to 80 microL min(-1). The biosensor recognition principle is based on DNA/RNA hybridization and liposome signal amplification. Superparamagnetic beads are incorporated into the system as a mobile solid support and are an essential part of the analysis scheme. In this study, the design, fabrication and the optimization of concentrations and amounts of the different biosensor components are carried out. The total time required for an assay is only 15 min including sample incubation time. The biosensor module is designed so that it can be easily integrated with a micro total analysis system, which will combine sample preparation and detection steps onto a single chip.  相似文献   

7.
A combined detection system involving simultaneous LIF and contacfless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conduetivity detector was used in C^4D. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably.  相似文献   

8.
Liu C  Mo YY  Chen ZG  Li X  Li OL  Zhou X 《Analytica chimica acta》2008,621(2):171-177
A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K+, Na+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L−1, 0.05 μmol L−1, 0.16 μmol L−1, 0.15 μmol L−1, 0.12 μmol L−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L−1 and 0.39 μmol L−1 for K+ and Na+ respectively.  相似文献   

9.
We report the first miniaturized fluorescent sensor based on algae, with an organic light emitting diode (OLED) and an organic photodetector (OPD) integrated into a microfluidic chip. The blue emission OLED was used as the excitation source, while a blend of PTB3/PC(61)BM was used for the fabrication of the organic photodetector. Excitation and emission color filters based on acid/base dyes and a metal complex were developed and assembled with the organic optoelectronic components in order to complete the fluorescent detection system. The detection system was then integrated in a microfluidic chip made from (poly)dimethylsiloxane (PDMS). The complete sensor is designed to detect algal fluorescence in the microfluidic chamber. Algal chlorophyll fluorescence enables evaluation of the toxicity of pollutants like herbicides and metals-ions from agricultural run-offs. The entirely organic bioassay here presented allowed detection of the toxic effects of the herbicide Diuron on Chlamydomonas reinhardtii green algae that gave 50% inhibition of the algae photochemistry (EC(50)) with a concentration as low as 11 nM.  相似文献   

10.
Christina M. McGraw 《Talanta》2007,71(3):1180-1185
Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12 V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3 mg/L and a linear dynamic range between 0 and 20 mg/L.  相似文献   

11.
The on-line coupling of flow-injection analysis (FIA) to an enzyme-amplified biochemical detection (EA-BCD) system is described. The aim of this study is the development of a detection system able to detect biotin-containing compounds at low concentration levels. The detection system is based on the interaction of biotin with enzyme-labeled affinity proteins. Biotin possesses a high affinity to both streptavidin and anti-biotin Fab fragments, which are both tested. Several biotin derivatives are available with different reactive probes, which can be used to label analytes of interest. Therefore, biotin acts as a universal probe for the enzyme-amplified biochemical detection. Alkaline phosphatase (AP) was used as enzyme label. Several parameters, such as substrate type and concentration, concentration of enzyme-labeled affinity protein, reaction time and reaction temperature were examined. Biotin aminocaproic acid was used as a model compound. In addition to biotin aminocaproic hydrazide, other biotinylation reagents were also examined. With fluorescence detection of the enzyme-generated product, a mass detection limit of 1 fmol was achieved.  相似文献   

12.
Microfluidics has enabled new cell biology experiments. Incorporating chemical monitoring of cellular secretion into chips offers the potential to increase information content and utility of such systems. In this work, an integrated, multilayer polydimethylsiloxane microfluidic chip was developed to simultaneously measure fatty acids and glycerol secreted from cultured adipocytes on chip in near real time. Approximately 48,000 adipocytes were loaded into a cell chamber in a reversibly sealed chip. Cells were perfused at 0.75 μL/min. Cell perfusate was split and directed to separate, continuously operating fluorescent enzyme assay channel networks. The fluorescent assay products were detected simultaneously near the outlet of the chip. The fatty acid and glycerol assays had linear dynamic ranges of 150 and 110 μM and limit of detection (LOD) of 6 and 5 μM, respectively. Surface modifications including pretreatment with sodium dodecyl sulfate were utilized to prevent adsorption of fatty acids to the chip surface. Using the chip, basal fatty acid and glycerol concentrations ranged from 0.18 to 0.7 nmol?×?106 cell?1 min?1 and from 0.23 to 0.85 nmol?×?106 cell?1 min?1, respectively. Using valves built into the chip, the perfusion solution was switched to add 20 μM isoproterenol, a β-adrenergic agonist, which stimulates the release of glycerol and fatty acids in adipocytes. This manipulation resulted in a rapid and stable 1.5- to 6.0-fold increase of non-esterified fatty acid (NEFA) and glycerol. The ratio of NEFA:glycerol released increased with adipocyte age. These experiments illustrate the potential for performing multiple real-time assays on cells in culture using microfluidic devices.  相似文献   

13.
An integrated microfluidic biosensor is presented that combines sample pre-concentration and liposome-based signal amplification for the detection of enteric viruses present in environmental water samples. This microfluidic approach overcomes the challenges of long assay times of cell culture-based methods and the need to extensively process water samples to eliminate inhibitors for PCR-based methods. Here, viruses are detected using an immunoassay sandwich approach with the reporting antibodies tagged to liposomes. Described is the development of the integrated device for the detection of environmentally relevant viruses using feline calicivirus (FCV) as a model organism for human norovirus. In situ fabricated nanoporous membranes in glass microchannels were used in conjunction with electric fields to achieve pre-concentration of virus–liposome complexes and therefore enhance the antibody–virus binding efficiency. The concentrated complexes were eluted to a detection region downstream where captured liposomes were lysed to release fluorescent dye molecules that were then quantified using image processing. This system was compared to an optimized electrochemical liposome-based microfluidic biosensor without pre-concentration. The limit of detection of FCV of the integrated device was at 1.6 × 105 PFU/mL, an order of magnitude lower than that obtained using the microfluidic biosensor without pre-concentration. This significant improvement is a key step toward the goal of using this integrated device as an early screening system for viruses in environmental water samples.  相似文献   

14.
Fluorescence Polarization Assays (FPAs) have been shown to have great utility in the detection of infectious diseases. Examples are presented of the use of O-polysaccharides (OPSs) for the detection of antibodies in serum, whole milk and whole blood to gram negative organisms (Brucella spp., Salmonella spp.). The use of proteins and peptides are also described for the detection of Mycobacterium bovis and Equine Infectious Anemia Virus. Fluorescence Polarization Inhibition Assays (FPIAs) are discussed for the specific and sensitive detection and quantitation of Salmonella spp. cells from culture. An example of the detection of enterohemorrhagic E. coli (EHECS) by Strand Displacement Amplification (SDA), coupled with FP, down to the single cell level, within thirty minutes, is described.  相似文献   

15.
Herbicides are highly toxic for both human and animal health. The increased application of herbicides in agriculture during the last decades has resulted in the contamination of both soil and water. Herbicides, under illumination, can inhibit photosystem II electron transfer. Photosynthetic membranes isolated from higher plants and photosynthetic micro-organisms, immobilized and stabilized, can serve as a biorecognition element for a biosensor. The inhibition of photosystem II causes a reduced photoinduced production of hydrogen peroxide, which can be measured by a chemiluminescence reaction with luminol and the enzyme horseradish peroxidase. In the present work, a compact and portable sensing device that combines the production and detection of hydrogen peroxide in a single flow assay is proposed for herbicide detection.  相似文献   

16.
Li F  Wang DD  Yan XP  Lin JM  Su RG 《Electrophoresis》2005,26(11):2261-2268
This paper represents the first study on direct interfacing of microfluidic chip-based capillary electrophoresis (chip-CE) to a sensitive and selective detector, atomic fluorescence spectrometry (AFS) for rapid speciation analysis. A volatile species generation technique was employed to convert the analytes from the chip-CE effluent into their respective volatile species. To facilitate the chip-CE effluent delivery and to provide the necessary medium for subsequent volatile species generation, diluted HCl solution was introduced on the chip as the makeup solution. The chip-CE-AFS interface was constructed on the basis of a concentric "tube-in-tube" design for introducing a KBH4 solution around the chip effluent as sheath flow and reductant for volatile species generation as well. The generated volatile species resulting from the reaction of the chip-CE effluent and the sheath flow were separated from the reaction mixture in a gas-liquid separator and swept into the AFS atomizer by an argon flow for AFS determination. Inorganic mercury (Hg(II)) and methylmercury (MeHg(I)) were chosen as the targets to demonstrate the performance of the present technique. Both mercury species were separated as their cysteine complexes within 64 s. The precision (relative standard deviation, RSD, n = 5) of migration time, peak area, and peak height for 2 mg.L(-1) Hg(II) and 4 mg.L(-1) MeHg(I) (as Hg) ranged from 0.7 to 0.9%, 2.1 to 2.9%, and 1.5 to 1.8%, respectively. The detection limit was 53 and 161 microg.L(-1) (as Hg) for Hg(II) and MeHg(I), respectively. The recoveries of the spikes of mercury species in four locally collected water samples ranged from 92 to 108%.  相似文献   

17.
The miniaturization of laboratory processes offers substantial advantages over traditional techniques in terms of cost, speed, and potential for multistage automation. To date, only a few studies have reported successful microfluidics-based immunoassays, most of which rely on fluorescence detection technologies. The goal of this study was to develop a poly(dimethylsiloxane) microfluidics-based immunoassay methodology and a versatile colorimetric quantification scheme for the detection of visual colour changes resulting from immune reactions in microchannels. The novel immunoassay technique was applied towards the detection of Helicobacter pylori infection using 20 human serum samples of known infection status, and results compared with conventional nitrocellulose membrane-based dot-ELISA. The microchannel immunoassay reliably detected H. pylori antigens in quantities on the order of 10 ng, which provides a sensitivity of detection comparable to conventional dot-blot assays. Sensitivity was 100%, specificity was 90%, positive predictive value 91%, and negative predictive value 100%, with an overall accuracy of 95%. The software developed generated results that were consistent with visual observations and by automatically taking into account background intensity changes, the software minimized subjectivity. Volumes of solutions used were 100-fold less compared with conventional immunoassays. Miniaturization of the ELISA using this technique provides a means for the accurate diagnosis of microbial infection while minimizing waste production.  相似文献   

18.
This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references. Figure
A graphical presentation of main PCR assays: DNA extraction from raw sample, target amplification by PCR and final product detection in conventional bench-top lab and miniaturized microfluidic chip.  相似文献   

19.
We describe the development and implementation of competitive fluorescence polarization (FP) based assays for determining activity of phosphoinositide 3-kinase (PI 3-K) and the type-II SH2-domain-containing inositol 5-phosphatase (SHIP2). These assays are based on the interaction of specific phosphoinositide binding proteins with fluorophore-labeled phosphoinositide and inositol phosphate tracers. Enzyme reaction products are detected by their ability to compete with the fluorescent tracers for protein binding, leading to an increase in the amount of free tracer and a decrease in polarization (mP) values. A variety of fluorophore-labeled tracers were evaluated, and assay sensitivity and specificity for products of PI 3-K and SHIP2 activity was determined. Assay performance was evaluated using recombinant PI 3-Kalpha and SHIP2 with diC(8)-PI(4,5)P(2) and diC(8)-PI(3,4,5)P(3) as respective substrates. IC(50) values for previously characterized PI 3-K inhibitors were within expected ranges. These assays are homogeneous, sensitive, and rapid, and suitable for HTS applications, and will facilitate screening for novel inhibitors of phosphoinositide kinases and phosphatases in drug development.  相似文献   

20.
Recently there has been concern regarding the use of flunitrazepam and other low-dose benzodiazepines in drug-facilitated sexual assault. These compounds are placed in drinks of unsuspecting victims and produce a sedative effect with anterorgrade amnesia. Chip-based microfluidic systems can provide a quick and disposable procedure for the detection of flunitrazepam and other nitrated benzodiazepines used in these crimes. This paper describes the application of indirect quenching of cyanine dye (Cy5) for detection of nitrated benzodiazepines. The separation is performed on a microfluidic device with a separation channel 8 cm long and 50 microm wide and utilizes indirect fluorescence detection with 635 nm laser excitation. The optimization of the separation using micellar electrokinetic chromatography with organic modifiers is described. A borate buffer containing 2.6 microM Cy5 dye, 15 mM sodium dodecyl sulphate (SDS) and 20% methanol is used. Complete separation of four target drugs occurs in under 2 min with limits of detection in the low microg/ml range. Overall the method provides a rapid and simple analysis for the presence of nitrated benzodiazepines in beverages and other similar preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号