首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Thyroid-stimulating hormone is a vital component of the regulatory mechanism that maintains the structure and function of the thyroid gland and governs thyroid hormone release. In this paper we report the first detailed structural characterization of the N-linked oligosaccharides of recombinant human thyroid-stimulating hormone (rhTSH). Using a strategy combining mass spectrometric analysis and sequential exoglycosidase digestion, we have defined the structures of the N-glycans released from recombinant human thyrotropin by peptide N-glycosidase F. All glycans are complex-type glycans and are mainly of the bi- and triantennary type with variable degrees of fucosylation and sialylation. The major non-reducing epitope in the complex-type glycans is: NeuAcalpha2-3Galbeta1-4GlcNAc (sialylated LacNAc). The carbohydrate microheterogeneity at the three glycosylation sites was studied using reversed-phase high-performance liquid chromatography (RP-HPLC), concanavalin A affinity chromatography and mass spectrometric techniques, including both matrix-assisted laser desorption/ionization (MALDI) and electrospray. rhTSH was reduced, carboxymethylated and then digested with trypsin. The mixture of peptides and glycopeptides was subjected to RP-HPLC and the structures of the glycopeptides were determined by MALDI in conjunction with on-target exoglycosidase digestions. After PNGase F digestion, the peptide moiety of the glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the quadrupole time-of-flight tandem mass (QTOF-MS/MS) spectrum. Glycosylation sites Asn-alpha52 and Asn-alpha78 contain mainly bi- and triantennary complex-type glycans. Only glycosylation site Asn-alpha52 bears fucosylated N-glycans. Minor tetraantennary complex structures were also observed on both glycosylation sites. Profiling of the carbohydrate moieties of Asn-beta23 indicates a large heterogeneity. Bi-, tri-, and tetraantennary N-glycans were present at this site. These data demonstrate site-specificity of glycosylation in the alpha subunit but not in the beta subunit of rhTSH with Asn-alpha52 bearing essentially di- and triantennary glycans with or without core fucosylation and bi- and triantennary glycans with no core fucosylation being attached to Asn-alpha78.  相似文献   

2.
N-Glycans in glycoprotein can be liberated either from glycoproteins or from their glycopeptides with glycoamidases. The latter approach is preferable, because it requires a smaller amount of the enzyme, and yields N-glycans in excellent yields. Moreover it alleviates the necessity of removing from the reaction mixture the detergents needed to denature the glycoproteins. On the other hand, this approach necessitates removal of interfering peptidic materials, because some of the peptide peaks often overlap with the peaks of carbohydrate chains in high-performance anion-exchange chromatography (HPAEC). These peptidic materials also hinder labeling of N-glycans by reductive amination. We have tried to remove the interfering peptidic materials by several different methods--octadecyl (C18) silica cartridge, cation-exchange resin column, and graphitized carbon cartridge. Unfortunately, none of these could completely remove the interfering peptidic materials. Therefore, we resorted to modify the amino groups of the peptidic materials with sodium 2,4,6-trinitro-benzene-1-sulfonate (TNBS) to render them more hydrophobic, so that they can be retained more strongly on the C18 or graphitized carbon cartridges. In the model study presented here, we were able to obtain N-glycans for HPAEC analyses without any interfering materials by a combination of TNBS reaction and graphitized carbon treatment.  相似文献   

3.
N-Glycosylation is a common post-translational modification of monoclonal antibodies with a potential effect on the efficacy and safety of the drugs; detailed knowledge about this glycosylation is therefore crucial. We have developed a reversed-phase liquid chromatographic–mass spectrometric method, with different fluorescent labels, for analysis of N-glycosylation, and compared the sensitivity and selectivity of the methods. Our work demonstrates that anthranilic acid as fluorescent label in combination with reversed-phase liquid chromatography–mass spectrometry is an advantageous method for identification and quantification of neutral and acidic N-glycans. Our results show that mass spectrometry-based quantification correlates with quantification by fluorescence. Chromatographic discrimination between several structural glycan isomers was achieved. The sharp peaks of the eluting anthranilic acid-labeled N-glycans enabled on-line mass spectrometric analysis of even low-abundance glycan species. The method is broadly applicable to N-glycan analysis and is an orthogonal analytical method to the widely established hydrophilic-interaction liquid chromatography of 2-aminobenzamide-labeled N-glycans for characterization of N-glycans derived from biopharmaceuticals.  相似文献   

4.
In this study, new hydroxyl-functionalized monodisperse polymeric hydrophilic interaction chromatography (HILIC) columns were developed using different derivatization agents. In addition, the influences of derivatization temperature of the best agent and polymer composition on the separation were investigated under HILIC conditions. Monodisperse–porous hydrophilic particles were synthesized by the seeded polymerization method using 3-chloro-2-hydroxypropile methacrylate (HPMA-CL) and ethylene glycol dimethacrylate (EGDMA) monomers. The chloropropyl terminal ends of the poly(HPMA-Cl-co-EGDMA) particles were derivatized with amine group of ethanolamine (EA), diethanolamine, and triethanolamine (TEA) at 80°C through nucleophilic reaction. The performance of synthesized particles was evaluated with the amount of ligand on the particle surfaces, column backpressure, and separation power under HILIC condition. TEA was found to be the best derivatization agent for the separation of toluene, acrylamide, thymine, adenine, and cytosine in respect to resolution factors (>1.5 for all analytes) and theoretical plate numbers (64.562?N/m for acylamide). Upon determination of the best ligand, then the effect of different derivatization temperatures and polymer composition on TEA performance was investigated. Of all the tested polymer compositions, the chromatographic performance of TEA-M-80 (the derivatization of TEA at 80°C together with M polymer composition) was found to be the best.  相似文献   

5.
The complexity of biotherapeutic products implies an ever-increasing list of product quality attributes that need to be monitored and characterized. In addition, the growing interest in implementing process analytical technology in biopharmaceutical production has further increased the testing burden, together with the need for rapid testing that can facilitate real-time or near-real-time decision-making. Capillary electrophoresis (CE) has made a place in biopharmaceutical analysis but is regarded as a low-throughput method, with the instrument dead time constituting more than 80% of the total time of analysis. In this study, the dead time of CE was utilized to analyse 3 mAb samples in a single-CE run. This approach resulted in an up to 77% reduction in the total analysis time and increased the productivity by up to 300%, compared to traditional single CE-ultraviolet runs, without compromising resolution or relative peak areas. Additionally, good method reproducibility was observed. The compatibility of the method has been demonstrated with protein A eluate and cation exchange chromatography fractions. We, thus, propose that sequential injections can be applied for fast and robust CE analysis of biopharmaceuticals.  相似文献   

6.
Selective determination of dithiocarbamate (DTC) fungicides is mainly performed by hydrophilic interaction liquid chromatography (HILIC). According to Crnogorac and Schwack, DTC analyses by HILIC only lead to meaningful results with a zwitterionic polymer-based hydrophilic interaction liquid chromatography (ZIC-pHILIC) column. Considering the limited availability of this special type of column and the importance of DTC residue analysis, several new HILIC columns were evaluated as alternatives to the ZIC-pHILIC column. Detection was carried out by ultraviolet light and by mass spectrometry (MS) on a single quadrupole mass spectrometer coupled to an electrospray ionization interface operating in negative mode. On nearly all tested columns, separation of dimethyldithiocarbamates, ethylenebis(dithiocarbamates), and propylenebis(dithiocarbamates) was achieved with ammonium acetate eluents (pH 6.8). However, due to ion suppression by the buffer and the limited alkaline pH stability, the tested silica-based columns were not suitable for the sensitive analysis of DTCs. The polymer-based iHILIC-Fusion was the only alternative that offered high MS sensitivity, when a buffer containing 15?mM aqueous ammonium hydroxide and 7.5?mM ammonium hydrogen carbonate (pH 9.8) was used, but the separation of the three DTC subclasses was poor. Thus, considering both selectivity and sensitivity, the originally proposed polymer-based ZIC-pHILIC column still outperformed all the tested newly available alternative HILIC columns.  相似文献   

7.
In view of glycomics studies in plants, it is important to have sensitive tools that allow one to analyze and characterize the N-glycans present on plant proteins in different species. Earlier methods combined plant-based sample preparations with CE-LIF N-glycan analysis but suffered from background contaminations, often resulting in non-reproducible results. This publication describes a reproducible and sensitive protocol for the preparation and analysis of plant N-glycans, based on a combination of the 'in-gel release method' and N-glycan analysis on a multicapillary DNA sequencer. Our protocol makes it possible to analyze plant N-glycans starting from low amounts of plant material with highly reproducible results. The developed protocol was validated for different plant species and plant cells.  相似文献   

8.
We report the analysis of human rhinovirus serotype 2 (HRV2) on a commercially available lab-on-a-chip instrument. Due to lack of sufficient native fluorescence, the proteinaceous capsid of HRV2 was labeled with Cy5 for detection by the red laser (lambda ex 630 nm) implemented in the instrument. On the microdevice, electrophoresis of the labeled virus was possible in a BGE without stabilizing detergents, which is in contrast to conventional CE; moreover, analysis times were drastically shortened to the few 10 s range. Resolution of the sample constituents (virions, a contaminant present in all virus preparations, and excess dye) was improved upon adaptation of the separation conditions, mainly by adjusting the SDS concentration of the BGE. Purity of fractions from size-exclusion chromatography after labeling of virus was assessed, and affinity complex formation of the labeled virus with various recombinant very-low-density lipoprotein receptor derivatives differing in the number of concatenated V3 ligand binding repeats was monitored. Virus analysis on microchip devices is of particular interest for experiments with infectious material because of easy containment and disposal of samples. Thus, the employment of microchip devices in routine analysis of viruses appears to be exceptionally attractive.  相似文献   

9.
Streptomyces subtilisin inhibitor (SSI) is a protein characterized by both its potent inhibitory activity toward subtilisin and its structure, composed of two homologous subunits. It binds two molecules of subtilisin to form a tetrameric complex. Intermolecularly cross-linked subtilisin is expected to form a polymeric complex with SSI. This could provide a useful model of protein-protein association. Therefore, preparation of fluorescence-labeled and cross-linked subtilisin was carried out.  相似文献   

10.
Specific labeling of tyrosine residues of Streptomyces subtilisin inhibitor (SSI) was carried out by dansyl chloride. Analysis revealed that two tyrosine residues out of three in SSI were modified. The resulting fluorescent SSI was fully active as a subtilisin inhibitor. Fluorescence spectra of the modified SSI were investigated. Efficiency of energy transfer from intrinsic tryptophan residues of SSI to the introduced dansyl residue was found to be influenced by the complex formation of SSI with subtilisin.  相似文献   

11.
An immunoassay for human alpha(1)-antitrypsin based on affinity-probe capillary isoelectric focusing (AP-CIEF) is described. The method is based on the separation of free and bound labeled antibody fragments by CIEF with laser-induced fluorescence detection. A recombinant Fab' fragment of mouse immunoglobulin G1 (IgG1) against human alpha(1)-antitrypsin was labeled with tetramethylrhodamine on the single cysteine residue at the hinge region. A single pI isomer of the labeled Fab' was purified by IEF in a slab of agarose gel and was then used as the affinity probe for alpha(1)-antitrypsin. The use of recombinant Fab' considerably simplified the labeling process. Although there was some difficulty in the quantification of native alpha(1)-antitrypsin with the affinity probe, carbamylation of the antigen sample by heat treatment with urea made the complex peaks appear reproducibly and more distinct, thus facilitating the identification and quantification of the complex. The system provided an almost linear response to a pure sample of alpha(1)-antitrypsin over a concentration range of 5-1000 ng/mL and the detection limit extended down to around 2 ng/mL. Alpha(1)-antitrypsin in a serum sample was determined using this system to be 1.2 mg/mL which is comparable to the reported value for the protein.  相似文献   

12.
In this work, the usefulness of capillary electrophoresis–electrospray ionization time-of-flight–mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight–mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6–7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.  相似文献   

13.
Aberrant glycosylation of proteins and lipids has been implicated in many human diseases, thus prompting the need for reliable analytical methods that permit dependable quantification of glycans originating from biological specimens. MS of permethylated glycans is currently employed to monitor disease-related aberrant glycosylation of proteins and lipids. However, enhancing the sensitivity of this type of analysis is still needed. Here, analysis of permethylated glycans at enhanced sensitivity is attained through miniaturized solid-phase permethylation and online solid-phase purification. Solid-phase permethylation method was miniaturized by reducing the amount of sodium hydroxide beads (one-third the original amount) packed in microspin columns. The efficiency of glycan permethylation was not adversely affected by this reduction. Online solid-phase purification of permethylated N-glycans derived from model glycoproteins, such as fetuin, α-1 acid glycoprotein and ribonuclease B, offered more sensitive and reproducible results than offline liquid-liquid and solid-phase extractions. Online solid-phase purification method described here permitted a 75% increase in signal intensities of permethylated glycans relative to offline purification methods. This is mainly due to the minimized sample handling associated with an online cleaning procedure. The efficiency and utility of online solid-phase purification was also demonstrated here for N-glycans derived from human blood serum. Online solid-phase purification permitted the detection of 73 N-glycan structures, while only 63 glycan structures were detected in the case of samples purified through liquid-liquid extraction. The intensities of the 63 structures that were detected in both cases were 75% higher for samples that were purified through the online method.  相似文献   

14.
Pterins are a class of compounds excreted in urine. Levels of the pterins are found to be significantly elevated in a variety of diseases. A new method involving hydrophilic interaction chromatography with fluorescence detection has been developed for analysis of neopterin, biopterin, and isoxanthopterin in urine samples. Separation of these pterins on an aminopropyl hydrophilic interaction column was achieved by isocratic elution. The effects of the organic modifier content, ionic strength, and pH of the mobile phase on the hydrophilic behavior of the pterins were studied and the mechanism of their separation was also investigated. Under the optimum chromatographic conditions the linearity (r ≥ 0.9995) and repeatability (relative standard deviation < 4.0%) of the method are good. Compared with reversed-phase high-performance liquid chromatography, the method is simple and convenient. The method was applied to the analysis of pterins in urine samples with satisfactory results.  相似文献   

15.
This study introduces a method to detect individual oxygen molecules by fluorescence microscopy of single hemocyanins. These respiratory proteins from a tarantula bind oxygen with high affinity. A spectrometric signature of the oxygenated protein is transferred to an attached fluorescence label, which can be detected at the single-molecule level. This technique opens new perspectives for the development of small and sensitive oxygen sensors as well as for the investigation of cooperative oxygen binding in respiratory proteins.  相似文献   

16.
A polyacrylamide (PAAm)-modified monolithic silica capillary column of increased phase ratio, 200T-PAAm, for hydrophilic interaction liquid chromatography (HILIC) was prepared. The column showed high separation efficiency, with a theoretical plate height H = 7–20 μm at a linear velocity, u = 1–7 mm/s. From a kinetic plot analysis, it was expected that the monolithic column could provide three times faster separation than particle-packed HILIC columns under a pressure limit at 20 MPa. HILIC coupled with electrospray ionization (ESI)–mass spectrometry (HILIC-ESI-MS) using the 200T-PAAm column was employed for the analysis of underivatized carbohydrates to achieve fast and efficient separations of mixtures containing mono-, di-, and trisaccharides within 5 min. Under single MS full scan mode, 200 pg of oligosaccharides was detected by the system. The limit of detection (LOD) of the LC-ESI-MS/MS system was determined using selected reaction monitoring (SRM) to be as low as 3.2 ng/mL (attomol level) for nonreducing saccharides. The system was successfully applied to the detection of disaccharides in extracts of plant, such as corn, soybean, and Arabidopsis thaliana. Figure HILIC-ESI-MS provides a high-efficiency separation and sensitive detection of underivatized carbohydrate oligomers, e.g., the homologs of glucose (1) up to maltoheptaose (7)  相似文献   

17.
Antibody-based therapeutic agents and other biopharmaceuticals are now used in the treatment of many diseases. However, when these biopharmaceuticals are administrated to patients, an immune reaction may occur that can reduce the drug's efficacy and lead to adverse side-effects. The immunogenicity of biopharmaceuticals can be evaluated by detecting and measuring antibodies that have been produced against these drugs, or antidrug antibodies. Methods for antidrug antibody detection and analysis can be important during the selection of a therapeutic approach based on such drugs and is crucial when developing and testing new biopharmaceuticals. This review examines approaches that have been used for antidrug antibody detection, measurement, and characterization. Many of these approaches are based on immunoassays and antigen binding tests, including homogeneous mobility shift assays. Other techniques that have been used for the analysis of antidrug antibodies are capillary electrophoresis, reporter gene assays, surface plasmon resonance spectroscopy, and liquid chromatography-mass spectrometry. The general principles of each approach will be discussed, along with their recent applications with regards to antidrug antibody analysis.  相似文献   

18.
19.
Fluorescein (2-(6-hydroxy-3-oxo-(3H)-xanthen-9-yl)benzoic acid) has been prepared inside the pores of zeolite-Y via ship-in-a-bottle synthesis. Fluorescein, whose dimensions prevent it from entering through the approximately 7 A windows of the faujasite zeolite used, was prepared by the acid-catalyzed reaction of resorcinol and phthalic anhydride. In this article we report initial spectroscopic data as well as an example of the usefulness of these fluorescence-labeled nanoparticles for imaging applications such as confocal fluorescence microscopy. Encapsulated fluorescein shows a remarkable increase in photostability.  相似文献   

20.
Hydrophilic interaction chromatography (HILIC) was employed to separate the co-eluted flavonoids from licorice extract under RP-HPLC mode. HILIC separations were carried out with the Atalantis HILIC Silica column and the CD-based column. The co-eluted flavonoids were well retained and separated on the two HILIC columns under HILIC mode. Similar results were obtained in the separation of another isoflavones sample, from kudzu extract under HILIC mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号