首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${\mathfrak{g}=\mathfrak{g}^{\bar 0}\oplus \mathfrak{g}^{\bar 1}}$ be a ${\mathbb{Z}_2}$ -graded Lie algebra. We study the posets of abelian subalgebras of ${\mathfrak{g}^{\bar 1}}$ which are stable w.r.t. a Borel subalgebra of ${\mathfrak{g}^{\bar 0}}$ . In particular, we find a natural parametrization of maximal elements and dimension formulas for them. We recover as special cases several results of Kostant, Panyushev, and Suter.  相似文献   

2.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

3.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

4.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

5.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

6.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

7.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

8.
9.
Let ${2\leq k\in \mathbb{N}}$ . Recently, Costantini and Zacher obtained a lattice-theoretic characterization of the classes ${\mathfrak{N}^k}$ of finite soluble groups with nilpotent length at most k. It is the aim of this paper to give a lattice-theoretic characterization of the classes ${\mathfrak{N}^{k-1}\mathfrak{A}}$ of finite groups with commutator subgroup in ${\mathfrak{N}^{k-1}}$ ; in addition, our method also yields a new characterization of the classes ${\mathfrak{N}^k}$ . The main idea of our approach is to use two well-known theorems of Gaschütz on the Frattini and Fitting subgroups of finite groups.  相似文献   

10.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

11.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

12.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

13.
In this paper, we give non-existence theorems for Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C }^{m+2})$ with $\mathfrak D $ -parallel normal Jacobi operator ${\bar{R}}_N$ and $\mathfrak D $ -parallel structure Jacobi operator $R_{\xi }$ if the distribution $\mathfrak D $ or $\mathfrak D ^{\bot }$ component of the Reeb vector field is invariant by the shape operator, respectively.  相似文献   

14.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^{p}(\mathbb{R}, w)}$ , where ${p \in (1, \infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{A}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a \in PSO^{\diamond}}$ ) and all convolution operators W 0(b) ( ${b \in PSO_{p,w}^{\diamond}}$ ), where ${PSO^{\diamond} \subset L^{\infty}(\mathbb{R})}$ and ${PSO_{p,w}^{\diamond} \subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R} \cup \{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^{p}(\mathbb{R}, w)}$ . Under some conditions on the Muckenhoupt weight w, we construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{A}_{p,w}}$ and establish a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ in terms of their Fredholm symbols. To study the Banach algebra ${\mathfrak{A}_{p,w}}$ we apply the theory of Mellin pseudodifferential operators, the Allan–Douglas local principle, the two idempotents theorem and the method of limit operators. The paper is divided in two parts. The first part deals with the local study of ${\mathfrak{A}_{p,w}}$ and necessary tools for studying local algebras.  相似文献   

15.
For ${b \in {^{\omega}}{\omega}}$ , let ${\mathfrak{c}^{\exists}_{b, 1}}$ be the minimal number of functions (or slaloms with width 1) to catch every functions below b in infinitely many positions. In this paper, by using the technique of forcing, we construct a generic model in which there are many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ with pairwise different values. In particular, under the assumption that a weakly inaccessible cardinal exists, we can construct a generic model in which there are continuum many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ with pairwise different values. In conjunction with these results, we give a generic model in which there are many Yorioka’s ideals ${\mathcal{I}_{f_\alpha}}$ with pairwise different covering numbers.  相似文献   

16.
The bcβγ-system $ \mathcal{W} $ of rank 3 has an action of the affine vertex algebra $ {V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ , and the commutant vertex algebra $ \mathcal{C}=\mathrm{Com}\left( {{V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right),\mathcal{W}} \right) $ contains copies of V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and Odake’s algebra $ \mathcal{O} $ . Odake’s algebra is an extension of the N = 2 super-conformal algebra with c = 9, and is generated by eight fields which close nonlinearly under operator product expansions. Our main result is that V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and $ \mathcal{O} $ form a Howe pair (i.e., a pair of mutual commutants) inside $ \mathcal{C} $ . More generally, any finite-dimensional representation of a Lie algebra $ \mathfrak{g} $ gives rise to a similar Howe pair, and this example corresponds to the adjoint representation of $ \mathfrak{s}{{\mathfrak{l}}_2} $ .  相似文献   

17.
Let K be a number field, let ${\varphi \in K(t)}$ be a rational map of degree at least 2, and let ${\alpha, \beta \in K}$ . We show that if α is not in the forward orbit of β, then there is a positive proportion of primes ${\mathfrak{p}}$ of K such that ${\alpha {\rm mod} \mathfrak{p}}$ is not in the forward orbit of ${\beta {\rm mod} \mathfrak{p}}$ . Moreover, we show that a similar result holds for several maps and several points. We also present heuristic and numerical evidence that a higher dimensional analog of this result is unlikely to be true if we replace α by a hypersurface, such as the ramification locus of a morphism ${\varphi: \mathbb{P}^{n} \to \mathbb{P}^{n}}$ .  相似文献   

18.
Let $\mathfrak{g }$ be a Lie algebra, $E$ a vector space containing $\mathfrak{g }$ as a subspace. The paper is devoted to the extending structures problem which asks for the classification of all Lie algebra structures on $E$ such that $\mathfrak{g }$ is a Lie subalgebra of $E$ . A general product, called the unified product, is introduced as a tool for our approach. Let $V$ be a complement of $\mathfrak{g }$ in $E$ : the unified product $\mathfrak{g } \,\natural \, V$ is associated to a system $(\triangleleft , \, \triangleright , \, f, \{-, \, -\})$ consisting of two actions $\triangleleft $ and $\triangleright $ , a generalized cocycle $f$ and a twisted Jacobi bracket $\{-, \, -\}$ on $V$ . There exists a Lie algebra structure $[-,-]$ on $E$ containing $\mathfrak{g }$ as a Lie subalgebra if and only if there exists an isomorphism of Lie algebras $(E, [-,-]) \cong \mathfrak{g } \,\natural \, V$ . All such Lie algebra structures on $E$ are classified by two cohomological type objects which are explicitly constructed. The first one $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ will classify all Lie algebra structures on $E$ up to an isomorphism that stabilizes $\mathfrak{g }$ while the second object $\mathcal{H }^{2} (V, \mathfrak{g })$ provides the classification from the view point of the extension problem. Several examples that compute both classifying objects $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ and $\mathcal{H }^{2} (V, \mathfrak{g })$ are worked out in detail in the case of flag extending structures.  相似文献   

19.
Let $ \mathfrak{g} $ be a simple Lie algebra and $ x \in \mathfrak{g} $ nilpotent. We derive a criterion for when the G-orbits in $ \mathfrak{g}* $ and the G x -orbits in $ {\left( {\mathfrak{g}^{x} } \right)}^{*} $ admit a common slice, applicable (in principle) when x is of Bala–Carter type. When $ \mathfrak{g} $ is of type A, or if x is the highest root vector with g not of type E8, we show that this criterion is satisfied. In these cases we also show that the Mishchenko–Fomenko shift of argument produces a maximal Poisson commutative polynomial subalgebra of $ S{\left( {\mathfrak{g}^{x} } \right)} $ which maps isomorphically by restriction of functions to an affine translate of a subspace of $ {\left( {\mathfrak{g}^{x} } \right)}^{*} $ . It is conjectured that the above criterion is satisfied when the dimensions of certain weights spaces, which can be computed purely combinatorially, are decreasing.  相似文献   

20.
Let R(+, ·) be a nilpotent ring and $ \left( {\mathfrak{M}, < } \right) $ be the lattice of all ring topologies on R(+, ·) or the lattice of all such ring topologies on R(+, ·) in each of which the ring R possesses a basis of neighborhoods of zero consisting of subgroups. Let ?? and ??? be ring topologies from $ \mathfrak{M} $ such that $ \tau = {\tau_0}{ \prec_\mathfrak{M}}{\tau_1}{ \prec_\mathfrak{M}} \cdots { \prec_\mathfrak{M}}{\tau_n} = \tau ^{\prime} $ . Then k????n for every chain $ \tau = {\tau ^{\prime}_0} < {\tau ^{\prime}_1} < \cdots < {\tau ^{\prime}_k} = \tau ^{\prime} $ of topologies from $ \mathfrak{M} $ , and also n?=?k if and only if $ {\tau ^{\prime}_i}{ \prec_\mathfrak{M}}{\tau ^{\prime}_{i + 1}} $ for all 0????i?<?k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号