首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of morbidity and mortality in the United States and cigarette smoking is a primary determinant of the disease. COPD is characterized by chronic airflow limitation as measured by the forced expiratory volume in one second (FEV1). In this study, the plasma proteomes of 38 middle-aged or older adult smokers with mild to moderate COPD, with FEV1 decline characterized as either rapid (RPD, n?=?20) or slow or absent (SLW, n?=?18), were interrogated using a comprehensive high-throughput proteomic approach, the accurate mass and time (AMT) tag technology. This technology is based upon a putative mass and time tag database (PMT), high-resolution LC separations and high mass accuracy measurements using FT-ICR MS with a 9.4-T magnetic field. The peptide and protein data were analyzed using three statistical approaches to address ambiguities related to the high proportion of missing data inherent to proteomic analysis. The RPD and SLW groups were differentiated by 55 peptides which mapped to 33 unique proteins. Twelve of the proteins have known roles in the complement or coagulation cascade and, despite an inability to adjust for some factors known to affect lung function decline, suggest potential mechanistic biomarkers associated with the rate of lung function decline in COPD. Whether these proteins are the cause or result of accelerated decline will require further research.  相似文献   

2.
Human breath analysis is a powerful and especially a non-invasive technique for the monitoring and hopefully also for the diagnosis of respiratory diseases, including chronic obstructive pulmonary disease (COPD). The exhaled breath of 95 patients suffering COPD and of 35 healthy controls was investigated using an Ion Mobility Spectrometer (IMS) coupled to a Multi-Capillary Column (MCC) without any pre-separation or pre-enrichment. Starting with the results from a Mann–Whitney-Wilcoxon rank sum test to find analytes with the highest potential with respect to differentiation, box and whisker plots, metabolic maps and probability charts were introduced and compared. In addition, the sensitivity, specificity, positive and negative predictive values and the accuracy of the relation were also summarized. The findings were compared to the results of a principal component analysis. Finally, decision trees were introduced to visualize the interdependencies between the analytes and the classifications. The application of these biostatistical methods with simultaneous inclusion of several VOCs for disease classification by ion mobility spectrometry of human breath will provide much more information than using single peaks and single concentration dependencies for disease classification and discrimination of various groups. Towards the future application of potential biomarkers for clinical diagnostic procedures, complex analytical methods, such as ion mobility spectrometry, need statistical and bioinformatical tools which are simple in application, visualize the results and support decisions on the basis of the data obtained from measurements of analytes in exhaled human breath.  相似文献   

3.
4.
Chronic obstructive pulmonary disease (COPD) is a major global health challenge with a gloom perspective of being one of the big three cause of death by 2020. No reliable/reproducible biomarker has been identified so far to match the clinically-based staging system (GOLD). Blood samples of 30 subjects divided into 6 groups (no-COPD/-smoker, no-COPD/non-smoker, COPD I, COPD II, COPD III, COPD IV) with 5 patients in each were tested by differential scanning calorimetry. There is a clear 15.4 % difference between the heat flow maxima measured when no-COPD subjects were compared in accordance to their smoking/non-smoking status. Odds ratio of different heat flow in actively smoking COPD patients in stage IV and stage I was 1.61. A reverse tendency is detected in the relevant non-smoking COPD groups. The differences are inconsistent in intermediate stages (COPD II and III). DSC seems to be an applicable and objective method for monitoring nicotine abuse. There is a chance to detect specific typology of thermokinetic patterns in the two extremes of COPD (I vs. IV). Further studies with increased sample size are needed to allow calculations on specificity/sensitivity/positive and negative predictive value of enthalpies and heat flow maximums. The first clinically relevant blood-based COPD marker on the intravascular side of the alveo-capillary screen is demonstrated by our pilot study.  相似文献   

5.
Non-invasive methods with potential for diagnosis of lung diseases gain increasing interest. Within the present study the exhaled breath of 132 persons (97 Chronic obstructive pulmonary disease (COPD) patients [35 COPD without lung cancer, 62 COPD with lung cancer] and 35 healthy volunteers) was investigated using an Ion Mobility Spectrometer (IMS) coupled to a Multi-Capillary Column (MCC) without any pre-separation or pre-enrichment. One hundred four different peaks were considered within the IMS-Chromatograms of the 10 mL breath samples of both groups. A principal component analysis (PCA) of these 104 peaks identified a single analyte, that allowed a separation of the healthy persons and the COPD patients (with and without lung cancer). The sensitivity obtained was 60%, the specificity 91%, the positive predictive value 95%. The peak was characterized as cyclohexanone (CAS 108-94-1). Subsequent studies must validate the identity of the peak used for separation of the two groups with a greater population and external standards. Breath gas analysis using ion mobility spectrometry offers a chance of separating healthy persons and COPD patients using a single analyte at a defined concentration.  相似文献   

6.
COPD is a disease characterised by a chronic inflammation of the airways and a not fully reversible airway obstruction. The spirometry is considered as gold-standard to diagnose the disease and to grade its severity. In this study we used the methodology of Ion Mobility Spectometry in order to detect Volatile Organic Compounds (VOCs) in exhaled breath of patients with COPD. The purpose of this study was to investigate if the VOCs detected in patients with COPD were different from the VOCs detected in exhaled breath of healthy controls. 13 COPD patients and 33 healthy controls were included in the study. Breath samples were collected via a side-steam Teflon tube and directly measured by an ion mobility spectrometer coupled to a multi capillary column (MCC/IMS). One peak was identified only in the patients group compared to the healthy control group. Consequently, the analysis of exhaled breath could be a useful tool to diagnose COPD.  相似文献   

7.
We define mAb proteomics as the global generation of disease specific antibodies that permit mass screening of biomarkers. An integrated, high-throughput, disease-specific mAb-based biomarker discovery platform has been developed. The approach readily provided new biomarker leads with the focus on large-scale discovery and production of mAb-based, disease-specific clinical assay candidates. The outcome of the biomarker discovery process was a highly specific and sensitive assay, applicable for testing of clinical validation paradigms, like response to treatment or correlation with other clinical parameters. In contrast to MS-based or systems biology-based strategies, our process produced prevalidated clinical assays as the outcome of the discovery process. By re-engineering the biomarker discovery paradigm, the encouraging results presented in this paper clearly demonstrate the efficiency of the mAb proteomics approach, and set the grounds for the next steps of studies, namely, the hunt for candidate biomarkers that respond to drug treatment.  相似文献   

8.
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.  相似文献   

9.
10.
11.
Reactions between CF2 and O(3P) have been studied at 295 K in a gas flow reactor sampled by a mass spectrometer. The major reaction for CF2 has been found to be $$CF_2 + O \to COF + F$$ with $$CF_2 + O \to CO + 2F(F_2 )$$ more than a factor of three slower. The rate coefficient for all loss processes for CF2 on reaction with O is (1.8±0.4)×10?11 cm3 s?1. The COF produced in (18) undergoes a fast reaction with O to produce predominantly CO2. $$COF + O \to CO_2 + F$$ It is uncertain from the results whether or not $$COF + O \to CO + FO$$ occurs, but in any event (19) is the major route. The rate coefficient for the loss of COF in this system [i.e., the combined rate coefficients for (19) and (20)] is (9.3±2.1)×10?11 cm3 s?1. Stable product analysis reveals that for each CF2 radical consumed, the following distribution of stable products is obtained: COF2 (0.04±0.02), CO (0.21±0.04), and CO2 (0.75±0.05). Thus COF2, which we assume is produced via $$CF_2 + O \xrightarrow{M} COF_2$$ is a very minor product in this reaction sequence. The measured rate coefficients demonstrate that reactions (18) and (19) are important sources of F atoms in CF4/O2 plasmas.  相似文献   

12.
13.
A series of new Ru(II)-DMSO complexes containing dicarboxylate ligands (dicarb), namely, oxalate (ox), malonate (mal), methylmalonate (mmal), dimethylmalonate (dmmal), and succinate (suc), have been synthesized and structurally characterized. These compounds were prepared from the known Ru(II)-Cl-DMSO anticancer complexes cis,fac-[RuCl2(DMSO-S)3(DMSO-O)] (1) and trans-[RuCl2(DMSO-S)4] (2) and from the chloride-free precursor fac-[Ru(DMSO-S)3(DMSO-O)3][CF3SO3]2 (3), with the aim of assessing how the nature of the anionic ligands influences the biological activity of these species. Basically, the investigated ligands can be divided into two groups. The reaction of either 1 or 2 with K2(dicarb) (dicarb = ox, mal, mmal) yielded preferentially the mononuclear species [K]fac-[RuCl(DMSO-S)3(eta2-dicarb)] (dicarb = mal, 6; mmal, 9; ox, 14) that contains a chelating dicarboxylate unit and a residual chloride. Likewise, when 3 was used as a precursor, the neutral mononuclear species fac-[Ru(DMSO-O)(DMSO-S)3(eta2-dicarb)] (dicarb = mal, 7; mmal, 10; ox, 16), which contains a DMSO-O ligand in the place of Cl-, was obtained. On the contrary, K2(suc) and K2(dmmal) yielded preferentially the dinuclear species [fac-Ru(DMSO-S)3(H2O)(mu-dicarb)]2 (dicarb = dmmal, 11; suc, 13), with two bridging dicarboxylate moieties. The two water molecules in anti geometry have strong intramolecular H-bonding with the non-coordinated oxygen atoms of the carboxylate groups. The solid-state X-ray structural data showed that the preferential binding mode of the investigated dicarboxylates, either bridging (mu) or chelating (eta2), is dictated mainly by steric reasons. Oxalate, unlike the other dicarboxylates, has also the bridging bis-chelate (eta4,mu) coordination mode available: this was found in the dinuclear species [{fac-RuCl(DMSO-S)3}2(eta4,mu-ox)] (15) and [{fac-Ru(DMSO-O)(DMSO-S)3}2(eta4,mu-ox)][CF3SO3]2 (17). We also isolated the unprecedented neutral metallacycle, [fac-Ru(DMSO-S)3(eta3,mu-ox)]4 (18), in which each oxalate unit has one unbound oxygen atom. The new complexes were thoroughly characterized by 1-D (1H and 13C) and 2-D (H-H- COSY and HMQC) NMR spectroscopy in solution and by IR spectroscopy in the solid state. The molecular structures of 10 compounds, 6-11, 13, 15, 17, and 18, were determined by X-ray crystallography. The behavior of selected complexes in aqueous solution was investigated by 1H NMR spectroscopy.  相似文献   

14.
A new, stable iron(III) complex with a pentadentate amide-containing macrocyclic ligand was prepared and fully characterized. The complex adopted a pentagonal-bipyramidal geometry, where an equatorial plane is occupied by the pyridine nitrogen, two deprotonated amide nitrogens, and two secondary amines from the macrocycle, and two axial positions are available for monodentate ligand (chloride anion or solvent molecule) coordination. The rigid, planar iron-amide building blocks are linked in a three-dimensional network via a system of hydrogen bonds, with the shortest Fe-Fe separation of 8.02 A. The coordination of strongly electron-donating, negatively charged deprotonated amide groups resulted in expected stabilization of a high oxidation state of iron (the redox potential of the Fe(III)L/Fe(II)L couple, -0.57 V vs SCE). In contrast to the majority of the iron complexes with polydentate amide ligands, the pentagonal-bipyramidal geometry of the macrocyclic complex described in this work affords a high-spin configuration of the central metal ion (room-temperature magnetic moment is 5.84 micro(beta)). Variable-temperature iron-57 M?ssbauer spectroscopy and ac and dc magnetization studies indicate slow paramagnetic relaxation and a crossover to long-range antiferromagnetic order at T < approximately 3.2 K.  相似文献   

15.
Nimesulide is a selective COX-2 inhibitor that is as effective as the classical non-acidic nonsteroidal anti-inflammatory drugs in the relief of various pain and inflammatory conditions, but is better tolerated with lower incidences of adverse effects than other drugs. After oral dose of 100 mg nimesulide to western subjects, a mean maximal concentration (C(max)) of 2.86 ~ 6.5 μg/mL was reached at 1.22 ~ 2.75 h and mean t(1/2β) of 1.8 ~ 4.74 h. This study developed a robust method for quantification of nimesulide for the pharmacokinetics and suitability of its dosage in Korea and compared its suitability with other racial populations. Nimesulide and internal standard were extracted from acidified samples with methyl tert-butyl ether and analyzed by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The 28 healthy volunteers took 2 tablets of 100 mg nimesulide and blood concentrations were analyzed during the 24 h post dose. Several pharmacokinetic parameters were represented: AUC(0-infinity) = 113.0 mg-h/mL, C(max) = 12.06 mg/mL, time for maximal concentrations (T(max)) = 3.19 h and t(1/2β) = 4.51 h. These were different from those of western populations as follows: AUC was 14.5% and C(max) was 28% that of of Korean subjects and T(max) and t(1/2β) were also different. The validated HPLC-UV method was successfully applied for the pharmacokinetic studies of nimesulide in Korean subjects. Because the pharmacokinetics of nimesulide were different from western populations, its dosage regimen needs to be adjusted for Koreans.  相似文献   

16.
A dual reactant/catalyst role of glyoxylic acid in the reaction of isatoic anhydride with various amines afforded a novel, robust and rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones. This metal catalyst-free reaction proceeds via an unusual and unexpected cleavage of C–C bond. A shorter and common route to two alkaloids, that is, rutaecarpine and evodiamine is also accomplished.  相似文献   

17.
In this study, a fast UHPLC‐MS/MS method was developed and validated for the determination of a novel potent carvone Schiff base of isoniazid (CSB‐INH) in rat plasma using carbamazepine as an internal standard (IS). After a single‐step protein precipitation by acetonitrile, CSB‐INH and IS were separated on an Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) under an isocratic mobile phase, consisting of acetonitrile: 10 mM ammonium acetate (95:5, v/v), at a flow rate of 0.3 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring mode by using positive electrospray ionization source. The precursor to product ion transitions were set at m/z 270.08 → 79.93 for CSB‐INH and m/z 237.00 → 178.97 for IS. The proposed method was validated in compliance with US Food and Drug Administration and European Medicines Agency guidelines for bioanalytical method validation. The method was found to be linear in the range of 0.35–2500 ng/mL (r2 ≥ 0.997) with a lower limit of quantification of 0.35 ng/mL. The intra‐ and inter‐day precision values were ≤12.0% whereas accuracy values ranged from 92.3 to 108.7%. In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of CSB‐INH in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号