首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wear-resistant coatings were prepared on the surface of the Q235 low-carbon steel plate by HVAS with the carbonitride alloying self-shielded flux-cored wire. Detection and analysis on the microstructure and properties of the coatings were carried out by using scanning electron microscope, microhardness tester and wear tester. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that the coatings have good forming, homogeneous microstructure and compact structure. The coatings have good hardness, the average microhardness value reaches 520 HV0.1, and the highest value is up to about 560 HV0.1. As a result, the coatings have good abrasive wear performance and adhesion strength.  相似文献   

2.
Structure and properties of aluminum coatings deposited onto steel substrates by the cold gas-dynamic spraying (CGS) method were examined. Aluminum CGS coatings fundamentally differ from their thermal counterparts as they enable the formation of heavy-duty layers of metal particles on substrates at temperatures below 500 K. A dense, low-porosity coating is found to form, tightly bound to the base metal. The adhesion strength is shown to weakly depend on the thickness of the sprayed coating due to the compressive stress present in the surface layer. A qualitative model for the coating formation process is proposed. This work was supported by the Russian Foundation for Basic Research (Grants Nos. 03-02-16329 and 05-07-90172).  相似文献   

3.
A combinatorial workflow has been produced for the development of novel, environmental-friendly marine coatings. A particularly challenging aspect of the workflow development was the selection and development of high-throughput screening methods that allow for some degree of prediction of coating performance in the aquatic environment of interest. The high-throughput screening methods currently in place include measurements of surface energy, viscoelastic properties, pseudobarnacle adhesion, and a suite of biological assays based on various marine organisms. An experiment involving a series of fouling-release coatings was used to correlate high-throughput screening data to data obtained from ocean site immersion testing. The results of the experiment showed that both bacterial biofilm surface coverage and storage modulus at 30 °C showed a good correlation with barnacle adhesion strength and a fair correlation with fouling rating, but surface energy and pseudobarnacle adhesion did not correlate with the results from ocean site testing.  相似文献   

4.
TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {1 1 1}, {2 0 0} {2 2 0} and {3 1 1} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from −40 to −150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion.  相似文献   

5.
New superhard coatings based on Ti-Hf-Si-N with good physical and mechanical properties have been fabricated. A comparative analysis of the physical, mechanical, and tribomechanical characteristics of the coatings has been performed. The values of hardness, modulus of elasticity, elastic recovery, adhesive strength, friction coefficient, and wear rate of the coatings have been determined and calculated. The specific features of deformation and fracture of the coatings deposited on a steel substrate during the adhesion tests have been described. It has been shown that the parameters measured during scratching make it possible to distinguish the threshold values of the critical load, which lead to different (cohesive and adhesive) types of failure of the coatings during tribological tests. The stoichiometry for different series of samples with Ti-Hf-Si-N coatings has been determined using Rutherford backscattering, secondary ion mass spectrometry, and energy dispersive microanalysis.  相似文献   

6.
This paper presents a technique to investigate the adhesion of thin coatings which combines digital speckle pattern interferometry and an indentation test. The proposed approach is based on the measurement of the local displacement field produced by a microindentation introduced on the coated surface of a specimen. It is experimentally demonstrated that the buckling of the coating generated by the microindentation depends on its adhesion to the substrate. Experiments carried out in specimens with different conditions in the coating–substrate interface show that digital speckle pattern interferometry can be used to determine the size of the buckled region and to give a measurement of the coating adhesion strength.  相似文献   

7.
Aluminum and ceramic (Al2O3) coatings were deposited onto the polymer substrate by air plasma spray (APS) to improve the mechanical properties of the polymer surface. The effect of spray parameters (current and spray distance in this paper) on the phase composition, microstructure and mechanical properties was investigated. Shear adhesion strength between the coatings and the substrates was also examined. The results indicate that the deposition parameters have a significant effect on the phase composition, microstructure and mechanical properties of as-spayed coatings. The maximum shear adhesion strength of the bond coats was 5.21 MPa with the current of 180 A and 190 mm spray distance.  相似文献   

8.
In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings.  相似文献   

9.
Silicon-containing hydroxyapatite coatings 400–700 nm in thickness are prepared by means of radio-frequency (RF) magnetron sputtering on a heated (to 200°C) titanium substrate chemically etched and treated with a pulsed electron beam. The morphology and phase composition of the coating are studied. The morphology and roughness of the composite “calcium-phosphate coating-titanium substrate” differ depending on the treatment procedure of the substrate before deposition. The scratch test method is used to assess the adhesion strength of the coatings formed at different values of bias potential applied to the substrate. It is observed that the adhesion strength of the coating changes with decreasing crystallite size.  相似文献   

10.
Mo离子注入对金刚石涂层附着性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
采用Mo离子注入工艺对YG6硬质合金基体表面进行处理,用微波等离子体CVD(MPCVD)法沉积金刚石涂层,研究了Mo离子注入工艺对金刚石涂层附着性能的影响.结果表明,Mo离子注入后,硬质合金基体表面的化学成分发生了明显变化;采用适当剂量的Mo离子注入基体,可使CVD金刚石涂层的附着性能显著提高. 关键词: 金刚石涂层 Mo离子注入 硬质合金基体 附着性能  相似文献   

11.
The paper presents the effect of HPD laser treatment on the microstructure and selected properties of the PVD CrN, (Ti,Al) and Ti(C,N) coatings deposited onto hot-work tool steel substrates. The microstructure and surface topography of the investigated samples are characteristic of the diversified morphology connected with the applied laser beam power. Employment of laser beam at 0.7 kW power to the laser treatment of samples with Ti(C,N) coatings causes clear coating adhesion growth because of the diffusive processes induced by heat release. Because of the higher value of the (Ti,Al)N absorption coefficient one can state that the observed substrate materials change and finally coatings destruction in case of those samples is the most noticeable. The moderate effect of the laser beam treatment of the hot-work tool steel with the PVD coating was observed for CrN coatings. However, for laser beam power above 0.5 kW differences in the thermal expansion coefficients of the substrate materials and coatings generate coating crackings.  相似文献   

12.
Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al2O3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.  相似文献   

13.
Ice adhesion on super-hydrophobic surfaces   总被引:4,自引:0,他引:4  
In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.  相似文献   

14.
Research on the icephobic properties of fluoropolymer-based materials   总被引:2,自引:0,他引:2  
Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at −8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at −8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to −8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.  相似文献   

15.
The Cr-Al-N coatings were synthesized at various substrate bias voltages and nitrogen partial pressures by multi-arc ion plating (M-AIP). The relationships between deposition parameters and coating properties were investigated. Morphologies, phase structures, hardness and adhesion strength of the coatings were analyzed by SEM, XRD, XPS, nano-indenter and scratch tester. The results indicated that with the increase of substrate bias voltages, the surface macroparticles and deposition rate reduced mainly for the resputtering phenomenon. The (Cr, Al)N solid-solution phase kept unchanged, but the Cr2N and AlN phases disappeared gradually. Due to the change of phase structures and residual compressive stress, the hardness values decreased and the adhesion strength decreased initially and then increased. Similarly, with the increase of nitrogen partial pressures, the phase structures of CrAlN coatings varied from Cr + Cr2N + (Cr,Al)N to Cr2N + (Cr,Al)N. The surface macroparticles increased due to the decreasing resputtering efficiency, and the deposition rate increased initially and then decreased due to the resputtering phenomenon. With increasing nitrogen partial pressures, adhesion strength decreased initially and then increased. The microhardness increased mainly due to the increase of Cr2N contents and decrease of metal macroparticles.  相似文献   

16.
The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.  相似文献   

17.
The critical velocity for particle deposition in cold spraying is a key parameter, which depends not only on the material type, but also the particle temperature and oxidation condition. The dependency of deposition efficiency of cold spray Cu particles on the particle temperature and surface oxidation was examined. The effect of particle surface oxide scales on the interfacial microstructure and adhesive strength of the cold-sprayed Cu coatings was investigated. The results show that the deposition efficiency significantly increases with increasing the gas temperature but decreases with augmenting the oxygen content of the starting powder. The oxide inclusions at the interfaces between the deposited particles inhibit the effective bonding of fresh metals and remarkably lower the bond strength of the deposited Cu coatings on steel.  相似文献   

18.
Diamond-like coatings with a total thickness of ~0.6 μm are obtained by physical vapor deposition with plasma separation and a pulsed carbon arc source with a cooled cathode and laser arc ignition; the substrates are titanium alloy (VT4), stainless steel (12Cr18N10T), and copper (M1). Scanning electron microscopy and profilometry are used to study the coatings surface and structure. The composition of the coatings and the fraction of sp3 bonds are studied using Raman spectroscopy. A wide peak in the 1580 cm-1 region is observed characteristic of diamond-like coatings. The coatings have a dense, nonporous structure. The tribological properties of the coatings are evaluated by the ball-on-disk method using a friction pair with WC and technical diamond. The strength characteristics are determined using linear scratch testing and nanoindentation measurements. The strength characteristics of the coatings vary and depend on the substrate materials. The friction coefficient of a diamond-like coating on VT4 alloy is ~0.1 in a friction pair with WC and ~0.01 with technical diamond.  相似文献   

19.
Ti-Si-N coatings with different silicon contents (0-12 at.%) were deposited onto Si(1 0 0) wafer, AISI M42 high speed steel, and stainless steel plate, respectively. These coatings were characterized and analyzed by using a variety of analytical techniques, such as XRD, AES, SEM, XPS, nanoindentation measurements, Rockwell C-type indentation tester, and scratch tester. The results revealed that the hardness was strongly correlated to the amount of silicon addition into a growing TiN film. The maximum hardness of 47.1 GPa was achieved as the Si content was 8.6 at.%. In the mechanical and oxidation resistance measurements, the Ti-Si-N coatings showed three distinct behaviors. (i) The coatings with Si contents of no more than 8.6 at.% performed good adhesion strength quality onto the HSS substrates. (ii) The fracture toughness of the coatings decreased with the increase in Si content. (iii) The Ti-Si-N coating with 8.6 at.% Si showed the excellent oxidation resistance behavior. The cutting performance under using coolant conditions was also evaluated by a conventional drilling machine. The drills with Ti-Si-N coatings performed much better than the drills with TiN coating and the uncoated drills.  相似文献   

20.
TiN/TiAlN multilayer coatings were deposited on M2 high speed steel by a pulsed bias arc ion plating system. The effect of pulsed bias duty ratio on the microstructure, mechanical and wear properties was investigated. The amount of macroparticles reduced with the increase of the duty ratio. The surface roughness was 0.0858 μm at duty ratio of 50%. TiN/TiAlN multilayer coatings were crystallized with orientations in the (1 1 1), (2 0 0) (2 2 2) and (3 1 1) crystallographic planes and the microstructure strengthened at (1 1 1) preferred orientation. At duty ratio of 20%, the hardness of TiN/TiAlN multilayer coatings reached a maximum of 3004 HV, which was 3.2 times that of the substrate. The adhesion strength reached a maximum of 77 N at 50% duty ratio. Friction and wear analyses were carried out by pin-on-disc tester at room temperature. Compared with the substrate, all the specimens coated with TiN/TiAlN multilayer coatings exhibited better tribological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号