首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher’s opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.  相似文献   

3.
Most of the active pharmaceutical ingredients like Metoprolol are oxidatively metabolized by liver enzymes, such as Cytochrome P450 monooxygenases into oxygenates and therefore hydrophilic products. It is of utmost importance to identify the metabolites and to gain knowledge on their toxic impacts. By using electrochemistry, it is possible to mimic enzymatic transformations and to identify metabolic hot spots. By introducing charged-tags into the intermediate, it is possible to detect and isolate metabolic products. The identification and synthesis of initially oxidized metabolites are important to understand possible toxic activities. The gained knowledge about the metabolism will simplify interpretation and predictions of metabolitic pathways. The oxidized products were analyzed with high performance liquid chromatography-mass spectrometry using electrospray ionization (HPLC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. For proof-of-principle, we present a synthesis of one pyridinated main oxidation product of Metoprolol.  相似文献   

4.
A highly efficient screening method for naturally occurring products that bind to a specific target protein was demonstrated by using hVDR magnetic beads. The native ligand 1α,25(OH)2 VD3 ( 1 ) was selectively bound by hVDR magnetic beads when present in a mixture of natural compounds. Furthermore, this method was shown to be applicable to the identification of natural products that interact with a specific protein immobilized on the beads from an extract of a natural resource. Two new natural compounds were isolated by this method. This approach will be helpful for the discovery of novel, naturally occurring products that bind to specific target proteins. This method has the further advantages that it can identify the HPLC peak corresponding to the target compound for isolation, as well as provide important UV, CD, or MS profile information.  相似文献   

5.
Myriocin is a potent inhibitor of serine‐palmitoyl‐transferase, the first and rate‐determining enzyme in the sphingolipids biosynthetic pathway. This study developed, validated and applied a LC–MS/MS method to measure myriocin in minute specimens of animal tissue. The chemical analog 14‐OH–myriocin was used as the internal standard. The two molecules were extracted from the tissue homogenate by solid‐phase extraction, separated by gradient reversed‐phase liquid chromatography and measured by negative ion electrospray mass spectrometry in the triple quadrupole. Detection was accomplished by multiple reaction monitoring, employing the most representative transitions, 400@104 and 402@104 for myriocin and 14‐OH‐myriocin, respectively. The typical limit of detection and lower limit of quantitation of the optimized method were 0.9 pmol/mL (~0.016 pmol injected) and 2.3 pmol/mL, respectively, and the method was linear up to 250 pmol/mL range (r 2 = 0.9996). The intra‐ and between‐day repeatability afforded a coefficient of variation ≤7.0%. Applications included quantification of myriocin in mouse lungs after 24 h from administration of ~4 nmol by intra‐tracheal delivery. Measured levels ranged from 4.11 (median; 2.3–7.4 IQR, n = 4) to 11.7 (median; 7.6–22.7 interquartile range (IQR), n = 6) pmol/lung depending on the different formulations used. Myriocin was also measured in retinas of mice treated by intravitreal injection and ranged from 0.045 (less than the limit of detection) to 0.35 pmol/retina.  相似文献   

6.
A self-aspirating, liquid microjunction surface sampling probe/electrospray emitter mass spectrometry system was demonstrated for use in the direct analysis of spotted and dosed drugs and their metabolites in thin tissue sections. Proof-of-principle sampling and analysis directly from tissue without the need for sample preparation was demonstrated first by raster scanning a region on a section of rat liver onto which reserpine was spotted. The mass spectral signal from selected reaction monitoring was used to develop a chemical image of the spotted drug on the tissue. The probe was also used to selectively spot sample areas of sagittal whole-body tissue from a mouse that had been dosed orally (90 mg/kg) with R,S-sulforaphane 3 h prior to sacrifice. Sulforaphane and its glutathione and N-acetyl cysteine conjugates were monitored with selected reaction monitoring and detected in the stomach and various other tissues from the dosed mouse. No signal for these species was observed in the tissue from a control mouse. The same dosed-tissue section was used to illustrate the possibility of obtaining a lane scan across the whole-body section. In total, these results illustrate the potential for rapid screening of the distribution of drugs and metabolites in thin tissue sections with the liquid micro-junction surface sampling probe/electrospray mass spectrometry approach. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

7.
8.
以草鱼、南美白对虾、中华绒鳌蟹为样品,建立了喹烯酮(QCT)和喹赛多(CYA)及其主要代谢物脱二氧喹烯酮(BDQCT)、3-甲基喹啉-2-羧酸(MQCA)、脱二氧喹赛多(BDCYA)和喹啉-2-羧酸(QCA)多残留的高效液相色谱-串联质谱(HPLC-MS/MS)确证检测方法。组织样品经乙腈-乙酸乙酯(1∶1)、盐酸溶液分步提取,Oasis MAX固相萃取柱净化,以甲醇、乙腈和0.1%甲酸溶液为流动相,经Waters XBridge C18色谱柱分离后,采用HPLC-MS/MS仪进行测定。采取正离子选择反应监测模式检测,外标法定量。结果表明,喹烯酮和喹赛多及其主要代谢物的响应值与其质量浓度在2~500μg/L范围内线性关系良好。在加标浓度为5~50μg/kg范围内,6种待测物的平均回收率为76.3%~94.2%,相对标准偏差为4.2%~11.7%。方法的检出限为0.5~1.6μg/kg,定量下限为2.0~5.0μg/kg。该方法适用于水产品中QCT和CYA及其主要代谢物残留的确证检测和同时定量分析。  相似文献   

9.
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.  相似文献   

10.
植物次生代谢物在抵御生物/非生物胁迫、生物间互作以及信息传递等方面发挥重要作用,次生代谢途径解析对植物分子育种、天然产物合成等方面具有重要意义。液相色谱-高分辨串联质谱(LC-HRMS/MS)为次生代谢物鉴定及途径表征提供了技术手段。非靶向LC-HRMS/MS方法可获得丰富的质谱信号,包括一级质谱和二级质谱(MS,MS/MS),但受质谱数据库规模以及次生代谢物复杂性的制约,次生代谢物注释十分困难。该研究以玉米叶片中苯丙烷途径代谢物为例,发展用于非靶向代谢组数据中重要途径代谢物的高效筛选和注释新方法。首先,利用公共代谢途径数据库及文献获取参与苯丙烷代谢途径的61种修饰反应类型,进而从非靶向实验数据中筛选出修饰代谢组。其次,获取开源串联质谱数据中的苯丙烷类化合物作为探针分子,构建探针分子质谱数据库。将探针分子与修饰代谢组共建分子网络,锁定目标途径代谢物并注释结构。该方法在正、负离子模式下分别筛选出玉米叶片中392个和417个苯丙烷途径候选代谢物,去冗余后共注释出129个代谢物,涉及苯丙烷代谢的主要分支途径,如黄酮途径的8个类黄酮、19个氧苷类黄酮和32个碳苷类黄酮,31个羟基肉桂酸途径代谢物以及22个木脂素途径代谢物;其中26个在PubChem和SciFinder数据库中未见收录。该研究利用探针分子结合修饰组可快速锁定途径代谢物,且有助于快速、准确的网络传播注释,可显著提高目标途径代谢物筛选与注释效率,为植物次生代谢途径的深入解析提供分析手段。  相似文献   

11.
Because of the large variability in the pharmacokinetics of anti‐HIV drugs, therapeutic drug monitoring in patients may contribute to optimize the overall efficacy and safety of antiretroviral therapy. An LC–MS/MS method for the simultaneous assay in plasma of the novel antiretroviral agents rilpivirine (RPV) and elvitegravir (EVG) has been developed to that endeavor. Plasma samples (100 μL) extraction is performed by protein precipitation with acetonitrile, and the supernatant is subsequently diluted 1:1 with 20‐mM ammonium acetate/MeOH 50:50. After reverse‐phase chromatography, quantification of RPV and EVG, using matrix‐matched calibration samples, is performed by electrospray ionization–triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The stable isotopic‐labeled compounds RPV‐13C6 and EVG‐D6 were used as internal standards. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<6.4%), as well as EVG and RPV short and long‐term stability in plasma. Calibration curves were validated over the clinically relevant concentrations ranging from 5 to 2500 ng/ml for RPV and from 50 to 5000 ng/ml for EVG. The method is precise (inter‐day CV%: 3–6.3%) and accurate (3.8–7.2%). Plasma samples were found to be stable (<15%) in all considered conditions (RT/48 h, +4°C/48 h, ?20°C/3 months and 60°C/1 h). Selected metabolite profiles analysis in patients' samples revealed the presence of EVG glucuronide, that was well separated from parent EVG, allowing to exclude potential interferences through the in‐source dissociation of glucuronide to parent drug. This new, rapid and robust LCMS/MS assay for the simultaneous quantification of plasma concentrations of these two major new anti‐HIV drugs EVG and RPV offers an efficient analytical tool for clinical pharmacokinetics studies and routine therapeutic drug monitoring service. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, an improved approach to interpret results of principal component analysis (PCA) of time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) spectra is presented. Signals are typically observed in different intensity ranges in a single ToF‐SIMS spectrum due to different sensitivity factors and surface concentrations. This can complicate the PCA interpretation, because loadings are reported to be strongly affected by these intensity changes. In contrast, it is shown here that correlation loadings are unaffected by these differences. In particular, correlation loadings were successfully used to identify signals with relatively low intensity but high significance. These signals may be overlooked when only loadings are used. This is particularly true in failure analysis, where ToF‐SIMS is used to screen for initially unknown signals that may be relevant for the characteristics/failure of a product. As a model study, the concept was applied to investigate ageing of Li‐ion batteries by ToF‐SIMS. In this data set, the significance of impurities that affect the quality of Li‐ion batteries was identified only by correlation loadings, whereas the loadings were found to overestimate the influence of other matrix signals. In addition, correlation loadings aid in the chemical identification and helped to successfully assign unknown peaks.  相似文献   

13.
Following the green analytical chemistry principles, an efficient strategy involving second-order data provided by liquid chromatography (LC) with diode array detection (DAD) was applied for the simultaneous determination of estriol, 17β-estradiol, 17α-ethinylestradiol and estrone in natural water samples. After a simple pre-concentration step, LC–DAD matrix data were rapidly obtained (in less than 5 min) with a chromatographic system operating isocratically. Applying a second-order calibration algorithm based on multivariate curve resolution with alternating least-squares (MCR-ALS), successful resolution was achieved in the presence of sample constituents that strongly coelute with the analytes. The flexibility of this multivariate model allowed the quantification of the four estrogens in tap, mineral, underground and river water samples. Limits of detection in the range between 3 and 13 ng L−1, and relative prediction errors from 2 to 11% were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号