首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitivity-based finite element model updating approach is presented to identify the local damages in axially functionally graded (AFG) beams. The local damage is simulated by a reduction in the elemental Young's modulus of the beam. In the forward analysis, free vibration analysis is conducted to obtain the natural frequency of the beam. Then forced vibration responses of the beam under external force are obtained from Newmark direct integration. In the inverse analysis, an objective function is established and a sensitivity-based finite element model updating approach is used to identify the local damages in the beam. Two numerical examples are investigated to illustrate the correctness and efficiency of the proposed method. Damage identification results from measured natural frequencies and the dynamic responses from different excitation forces are compared. The effects of measurement noise on the identification results are investigated. Studies in this paper indicate that the proposed method is efficient and robust for identifying damages in the axially functionally graded beams. Good identified results can be obtained from the short time histories of a few number of measurement points and the first several natural frequencies.  相似文献   

2.
The large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The Von-Karman type nonlinear strain–displacement relationships are employed where the ends of the beam are constrained to move axially. The effects of the transverse shear deformation and rotary inertia are included based upon the Timoshenko beam theory. The material properties are assumed to be graded in the thickness direction according to the power-law distribution. A statically exact beam element which devoid the shear locking effect with displacement fields based on the first order shear deformation theory is used to study the geometric nonlinear effects on the vibrational characteristics of functionally graded beams. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law exponent, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible. Some new results for the nonlinear natural frequencies are presented in both tabular and graphical forms which can be used for future references.  相似文献   

3.
This research describes spectral finite element formulation for vibration analysis of rectangular symmetric cross-ply laminated composite plates of Levy-type based on classical lamination plate theory (CLPT). Formulation based on SFEM includes partial differential equations of motion, spectral displacement field, dynamic shape functions, and spectral element stiffness matrix (SESM). In this paper, vibration analysis of composite plate is investigated in two sections: free vibrations and forced vibrations. In free vibrations, natural frequencies are calculated for different Young’s moduli ratios and boundary conditions. In forced vibrations, plate vibrations are investigated under high-frequency concentrated impulsive loads. The resulting responses due to spectral element formulation are compared with those of (time-domain) finite element and analytical formulations, whenever available. The results demonstrate the superiority of SFEM with respect to FEM, in reducing computational burden, simultaneously increasing numerical accuracy, specifically for excitations of high-frequency content. By reducing the time duration of impulsive loads, and consequently increasing the modal contribution of higher modes in the transient response of plate, the accuracy of FEM responses decreases substantially accompanied with a high volume of computations, while the accuracy of the SFEM response results is very high and simultaneously, with a low computational burden. Practically, SFEM follows very closely exact analytical solutions.  相似文献   

4.
In this paper, free vibration analysis of cracked composite beam subjected to coupled bending–torsion loading is presented. The composite beam is assumed to have an open edge crack of length a. A first order shear deformation theory is applied to count for the effect of shear deformations on natural frequencies as well as the effect of coupling in torsion and bending modes of vibration. Governing equations and boundary conditions are derived using Hamilton principle. Local flexibility matrix is used to obtain the additional boundary conditions of the beam in cracked area. After obtaining the governing equations and boundary conditions, generalized differential quadrature (GDQ) method is applied to solve the obtained eigenvalue problem. Finally, some numerical results of beams with various boundary conditions and different fiber orientations are given to show the efficiency of the method. In addition, to study the effect of shear deformations, numerical results of the current model are compared with previously given results in which shear deformations were neglected.  相似文献   

5.
This paper applies the isogeometric analysis (IGA) based on unified one-dimensional (1D) models to study static, free vibration and dynamic responses of metallic and laminated composite straight beam structures. By employing the Carrera Unified Formulation (CUF), 3D displacement fields are expanded as 1D generalized displacement unknowns over the cross-section domain. 2D hierarchical Legendre expansions (HLE) are adopted in the local area for the refinement of cross-section kinematics. In contrast, B-spline functions are used to approximate 1D generalized displacement unknowns, satisfying the requirement of interelement high-order continuity. Consequently, IGA-based weak-form governing equations can be derived using the principle of virtual work and written in terms of fundamental nuclei, which are independent of the class and order of beam theory. Several geometrically linear analyses are conducted to address the enhanced capability of the proposed approach, which is prominent in the detection of shear stresses, higher-order modes and stress wave propagation problems. Besides, 3D-like behaviors can be captured by the present IGA-based CUF-HLE method with reduced computational costs compared with 3D finite element method (FEM) and FEM-based CUF-HLE method.  相似文献   

6.
基于修正的偶应力理论与四参数高阶剪切?法向伸缩变形理论,提出了一种具有尺度依赖性的准三维功能梯度微梁模型,并应用于小尺度功能梯度梁的静力弯曲和自由振动分析中.采用第二类Lagrange方程,推导了微梁的运动微分方程及边界条件.针对一般边值问题,构造了一种融合Gauss?Lobatto求积准则与微分求积准则的2节点16自...  相似文献   

7.
In this study, the time dependent free vibration analysis of composite concrete-filled steel tubular (CFST) arches with various uncertainties is thoroughly investigated within a non-stochastic framework. From the practical inspiration, both uncertain material properties and mercurial creep effect associated with such composite materials are simultaneously incorporated. Unlike traditional non-probabilistic schemes, both spatially independent (i.e., conventional interval models) and dependent (i.e., interval fields) interval system parameters can be comprised within a unified uncertain free vibration analysis framework for CFST arches. For the purpose of achieving a robust framework of the time-dependent uncertain free vibration analysis, a new computational approach, which has been developed within the scheme of the finite element method (FEM), has been proposed for determining the extreme bounds of the natural frequencies of practically motivated CFST arches. Consequently, by successfully solving two eigenvalue problems, the upper and lower bounds of the natural frequencies of such composite structures with various uncertainties can be rigorously secured. The unique advantage of the proposed approach is that it can be effectively integrated within commercial FEM software with preserved sharp bounds on natural frequencies for any interval field discretisation. The competence of the proposed computational analysis framework has been thoroughly demonstrated through investigations on both 2D and3D engineering structures.  相似文献   

8.
This paper presents a novel finite element formulation for static, free vibration and buckling analyses of laminated composite plates. The idea relies on a combination of node-based smoothing discrete shear gap method with the higher-order shear deformation plate theory (HSDT) to give a so-called NS-DSG3 element. The higher-order shear deformation plate theory (HSDT) is introduced in the present method to remove the shear correction factors and improve the accuracy of transverse shear stresses. The formulation uses only linear approximations and its implementation into finite element programs is quite simple and efficient. The numerical examples demonstrated that the present element is free of shear locking and shows high reliability and accuracy compared to other published solutions in the literature.  相似文献   

9.
《应用数学和力学》2016,(Z1):97-104
A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear ?nite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aero-dynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities signi?cantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.  相似文献   

10.
The free vibration and stability of axially functionally graded tapered Euler–Bernoulli beams are studied through solving the governing differential equations of motion. Observing the fact that the conventional differential transform method (DTM) does not necessarily converge to satisfactory results, a new approach based on DTM called differential transform element method (DTEM) is introduced which considerably improves the convergence rate of the method. In addition to DTEM, differential quadrature element method of lowest-order (DQEL) is used to solve the governing differential equation, as well. Carrying out several numerical examples, the competency of DQEL and DTEM in determination of free longitudinal and free transverse frequencies and critical buckling load of tapered Euler–Bernoulli beams made of axially functionally graded materials is verified.  相似文献   

11.
In this paper, a methodology is introduced to address the free vibration analysis of cracked plate subjected to a uniaxial inplane compressive load for the first time. The crack, assumed to be open and at the edge is modeled by a massless linear rotational spring. The governing differential equations are derived using the Mindlin theory, taking into account the effect of initial imperfection. The response is assumed to be consisting of static and dynamic parts. For the static part, differential equations are discretized using the differential quadrature element method and resulting nonlinear algebraic equations are solved by an arc-length strategy. Assuming small amplitude vibrations of the plate about its buckled state and exploiting the static solution in the linearized vibration equations, the dynamic equations are converted into a non-standard eigenvalue problem. Finally, natural frequencies and modal shapes of the cracked buckled plate are obtained by solving this eigenvalue problem. To ensure the validity of the suggested approach an experimental setup and a numerical finite element model have been made to analyze the vibration of a cracked square plate with simply supported boundary conditions. Also, several case-studies of cracked buckled plate problem have been solved utilizing the proposed method, and effects of selected parameters have been studied. The results show that the applied load and geometric imperfection as well as the position, size and depth of the crack have different impact on natural frequencies of the plate.  相似文献   

12.
The free bending vibration of rotating axially functionally graded (FG) Timoshenko tapered beams (TTB) with different boundary conditions are studied using Differential Transformation method (DTM) and differential quadrature element method of lowest order (DQEL). These two methods are capable of modelling any beam whose cross sectional area, moment of inertia and material properties vary along the beam. In order to verify the competency of these two methods, natural frequencies are obtained for problems by considering the effect of material non-homogeneity, taper ratio, shear deformation parameter, rotating speed parameter, hub radius and tip mass. The results are tabulated and compared with the previous published results wherever available.  相似文献   

13.
The finite element dynamic response of an unsymmetric composite laminated orthotropic beam, subjected to moving loads, has been studied. One-dimensional finite element based on classical lamination theory, first-order shear deformation theory, and higher-order shear deformation theory having 16, 20 and 24 degrees of freedom, respectively, are developed to study the effects of extension, bending, and transverse shear deformation. The theories also account for the Poisson effect, thus, the lateral strains and curvatures can be expressed in terms of the axial and transverse strains and curvatures and the characteristic couplings (bend–stretch, shear–stretch and bend–twist couplings) are not lost. The dynamic response of symmetric cross-ply and unsymmetric angle-ply laminated beams under the action of a moving load have been compared to the results of an isotropic simple beam. The formulation also has been applied to the static and free vibration analysis.  相似文献   

14.
This paper presents an efficient and accurate differential quadrature (DQ) large amplitude free vibration analysis of laminated composite thin beams on nonlinear elastic foundation. Beams under consideration have elastically restrained against rotation and in-plane immovable edges. Elastic foundation has cubic nonlinearity with shearing layer. We impose the boundary conditions directly into the governing equations in spite of the conventional DQ method and without any extra efforts. A direct iterative method is used to solve the nonlinear eigenvalue system of equations after transforming the governing equations into the frequency domain. The fast rate of convergence of the method is shown and their accuracy is demonstrated by comparing the results with those for limit cases, i.e. beams with classical boundary conditions, available in the literature. Besides, we develop a finite element program to verify the results of the presented DQ approach and to show its high computational efficiency. The effects of different parameters on the ratio of nonlinear to linear natural frequency of beams are studied.  相似文献   

15.
This paper applies the asymptotic perturbation approach (APA) to obtain a simple analytical expression for the free vibration analysis of non-uniform and non-homogenous beams with different boundary conditions. A linear governing equation of non-uniform and non-homogeneous beams is obtained based on the Euler–Bernoulli beam theory. The perturbative theory is employed to derive an asymptotic solution of the natural frequency of the beam. Finally, numerical solutions based on the analytical method are illustrated, where the effect of a variable width ratio on the natural frequency is analyzed. To verify the accuracy of the present method, two examples, piezoelectric laminated trapezoidal beam and axially functionally graded tapered beam, are presented. The results are compared with those results obtained from the finite element method (FEM) simulation and the published literature, respectively, and a good agreement is observed for lower-order beam frequencies.  相似文献   

16.
Fractals have the potential to describe complex microstructures but presently no solution methodologies exist for the prediction of deformation on transiently deforming fractal structures. This is achieved in this paper with the development of analytical solutions on vibrating composite rods and beams. The fractals considered are necessarily deterministic and relatively simple in form to demonstrate the solution methodology. The solutions are limited to beams and rods constructed from an idealised-composite material consisting of relatively large rigid particles embedded in an infinitely thin pliable matrix. Although, as a result, the fractal composite system is not representative of a realistic physical system the methodologies presented do serve to highlight the practical difficulties in using fractals in structural dynamics. Static loading is restricted to spatially invariant axial forces and bending moments as solutions on a unified state of continuum stress are sought which then serve as initial conditions for the vibratory problem. It is demonstrated that measurable displacement is possible on a fractal structure and that finite measures of total, kinetic and strain energy are simultaneously achievable. The approach involves the use of modal analysis to determine modes at natural frequencies that satisfy boundary conditions. These are combined to provide a free vibration solution on a fractal that satisfies the initial conditions in the form of a fractal displacement field.  相似文献   

17.
In this paper, a high accuracy and rapid convergence hybrid approach is developed for two-dimensional static analyses of circular arches with different boundary conditions. The method essentially consists of a layerwise technique in the thickness direction in conjunction with differential quadrature method (DQM) in the axial direction. Hence, the high accuracy and fast convergence of DQM with generality of layerwise formulations for modeling the transverse deformations of arbitrary laminated composite thick arches are combined. This results in superior accuracy with fewer degrees of freedom than conventional finite element method (FEM) or finite difference method (FDM). The convergence behavior of the method is shown and to verify its accuracy, the results are compared with those obtained based on the first order shear deformation Reissner–Naghdi type shell theory and also higher order shear deformation theory. The effects of opening angles, ply angle, boundary conditions, and thickness-to-length ratio on the stress and displacement components are studied.  相似文献   

18.
This paper presents an alternative alpha finite element method using triangular meshes (AαFEM) for static, free vibration and buckling analyses of laminated composite plates. In the AαFEM, an assumed strain field is carefully constructed by combining compatible strains and additional strains with an adjustable parameter α which can produce an effectively softer stiffness formulation compared to the linear triangular element. The stiffness matrices are obtained based on the strain smoothing technique over the smoothing domains and the constant strains on triangular sub-domains associated with the nodes of the elements. The discrete shear gap (DSG) method is incorporated into the AαFEM to eliminate transverse shear locking and an improved triangular element termed as AαDSG3 is proposed. Several numerical examples are then given to demonstrate the effectiveness of the AαDSG3.  相似文献   

19.
Interaction curves for vibration and buckling of thin-walled composite box beams with arbitrary lay-ups under constant axial loads and equal end moments are presented. This model is based on the classical lamination theory, and accounts for all the structural coupling coming from material anisotropy. The governing differential equations are derived from the Hamilton’s principle. The resulting coupling is referred to as triply flexural–torsional coupled vibration and buckling. A displacement-based one-dimensional finite element model with seven degrees of freedoms per node is developed to solve the problem. Numerical results are obtained for thin-walled composite box beams to investigate the effects of axial force, bending moment, fiber orientation on the buckling loads, buckling moments, natural frequencies and corresponding vibration mode shapes as well as axial-moment–frequency interaction curves.  相似文献   

20.
As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dimensional theory of elasticity. The problem domain along axial direction is discretized using finite elements. The resulting system of equations and the related boundary conditions are discretized in the thickness direction and in strong-form using DQM. The method benefits from low computational efforts of the DQ in conjunction with the effectiveness of the FE method in general geometry and systematic boundary treatment resulting in highly accurate and fast convergence behavior solution. The boundary conditions at the top and bottom surface of the beams are implemented accurately. The presented formulations provide an effective analysis tool for beams free of shear locking. Comparisons are made with results from elasticity solutions as well as higher-order beam theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号