首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic dyes from different sources (wastewater and effluents) can be harmful to the environment even at minor quantity. Low cost natural biosorbent have been proved beneficial for water treatment and have excellent capability for the elimination of certain dyes from aqueous media. The present study purposed to utilize lemon peel as a natural sorbent for eosin dye in an aqueous media. The biosorbent were analyzed utilizing fourier transform infrared spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX) and surface area analyzer (BET). The batch adsorption approach was carried out to optimize the basic parameters affecting the sorption phenomena. Anionic dye, eosin, was removed by adsorption utilizing lemon peel, as an biosorbent and such adsorption are affected by different physical factors i.e adsorbent dose, contact time, temperature etc. Freundlich and Langmuir's adsorption isotherm models are used to verify the results. The monolayer adsorption capacity was 8.240 mg/g at 30 °C that is calculated from Langmuir isotherm. The adsorption process is exothermic, shown by calculations thermodynamic parameters. Kinetics studies have represented that the adsorption process could be better explained by pseudo-second-order kinetics. All the parameters of biosorbent were compared with each other and proved that lemon peel, which is readily available, economic biosorbent, for the removal of eosin dye from the aqueous media.  相似文献   

2.
3.
A novel adsorbent, bioglass nanospheres (BGN), has been prepared by a facile process. The BGN were spheres with an amorphous structure and a relatively high specific surface area, as indicated by SEM, transmission electron microscopy, BET, FTIR, and XRD. This paper was aimed at evaluating the adsorption behavior of this new material for the adsorptive removal of cationic (methylene blue, neutral red) and anionic (congo red) dyes from aqueous solution. The effects of the initial dye concentration, contact time, solution pH, and temperature were investigated. The adsorption kinetics showed that the adsorption behavior followed the pseudo-second-order kinetic model. The adsorption isotherm fit well to the Langmuir model. Thermodynamic analyses showed that the adsorption was physisorption, and it was also a spontaneous and endothermic process. The BGN exhibited a good reusability after five consecutive cycles for cationic dyes. In addition, the possible adsorption mechanism was also proposed based on the above experimental results.  相似文献   

4.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

5.
The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl or-ange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was studied. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an effective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.  相似文献   

6.
Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.  相似文献   

7.
Comparative adsorption studies of indigo carmine dye on chitin and chitosan   总被引:8,自引:0,他引:8  
The adsorption of indigo carmine dye onto chitin and chitosan from aqueous solutions was followed in a batch system. The ability of these materials to adsorb indigo carmine dye from aqueous solution was followed through a series of adsorption isotherms adjusted to a modified Langmuir equation. The maximum number of moles adsorbed was 1.24 +/- 0.16 x 10(-5) and 1.54 +/- 0.03 x 10(-4) mol g(-1) for chitin and chitosan, respectively. The same interactions were calorimetrically followed and the thermodynamic data showed exothermic enthalpic values of -40.12 +/- 3.52 and -29.25 +/- 1.93 kJ mol(-1) for chitin and chitosan, respectively. Gibbs free energies for the two adsorption processes of indigo carmine dye presented a positive value for chitin and a negative one for chitosan, reflecting that dye/surface interactions are thermodynamic favorable for chitosan and nonspontaneous for chitin at 298.15 K. The interaction processes were accompanied by an increase of entropy value for chitosan (90 +/- 6 J mol(-1)K(-1)) and a decrease for chitin (-145 +/- 13 J mol(-1)K(-1)). Thus, dye/chitosan interaction showed favorable enthalpic and entropic processes, reflecting thermodynamic stability of the formed complex, while dye/chitin interaction showed an exothermic enthalpic value and a highly nonfavorable entropic effect, resulting in a nonspontaneous thermodynamic system.  相似文献   

8.
In recent times, polyaniline (PANI), a conducting polymer, has been studied widely for environmental remediation application due to its controllable electric conductivity with high surface area, which makes it a suitable adsorbent material. But lower mechanical stability of PANI is considered to be a serious drawback for its large-scale industrial application. To improve the mechanical strength of PANI, in this study, hematite nanoparticles were impregnated onto PANI by oxidative polymerization method in order to fabricate a novel organometallic nanocomposite (hematite-PANI-NC). The hematite-PANI-NC was used as adsorbent for removal of methyl orange (MO) and eosin yellow (EY) dye from binary dye matrix under ultrasonic-assisted adsorption. Excellent MO and EY dye removal (more than 98%) was observed from binary matrix at a wide solution pH from 2.0 to 6.0, and under ultrasound wave the adsorption equilibrium was achieved within 15 min only. Both MO and EY dyes adsorption experimental data strictly followed Langmuir isotherm, and maximum monolayer adsorption capacity of 126.58 mg/g and 112.36 mg/g was observed for MO and EY dye, respectively. The uptake mechanism of MO and EY dyes onto hematite-PANI-NC is governed by electrostatic interaction, π-π bonding and hydrogen bonding between dye molecules and nanocomposite. Response surface methodology analysis reveals maximum MO and EY removal of 98.43% and 99.35% at optimum experimental conditions. This study implies that the hybrid organometallic material hematite-PANI-NC has high potential for quick and enhanced sono-assisted uptake of anionic dyes from water near neutral solution pH.  相似文献   

9.
Dye and its removal from aqueous solution by adsorption: A review   总被引:1,自引:0,他引:1  
In this review article the authors presented up to-date development on the application of adsorption in the removal of dyes from aqueous solution. This review article provides extensive literature information about dyes, its classification and toxicity, various treatment methods, and dye adsorption characteristics by various adsorbents. One of the objectives of this review article is to organise the scattered available information on various aspects on a wide range of potentially effective adsorbents in the removal of dyes. Therefore, an extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here. Dye bearing waste treatment by adsorption using low cost alternative adsorbent is a demanding area as it has double benefits i.e. water treatment and waste management. Further, activated carbon from biomass has the advantage of offering an effected low cost replacement for non-renewable coal based granular activated carbon provided that they have similar or better adsorption on efficiency. The effectiveness of various adsorbents under different physico-chemical process parameters and their comparative adsorption capacity towards dye adsorption has also been presented. This review paper also includes the affective adsorption factors of dye such as solution pH, initial dye concentration, adsorbent dosage, and temperature. The applicability of various adsorption kinetic models and isotherm models for dye removal by wide range of adsorbents is also reported here. Conclusions have been drawn from the literature reviewed and few suggestions for future research are proposed.  相似文献   

10.
The decontamination of bisphenol A (BPA) from aqueous solution by graphene adsorption was investigated. The maximum adsorption capacity (q(m)) of graphene for BPA obtained from a Langmuir isotherm was 182 mg/g at 302.15 K, which was among the highest values of BPA adsorption compared with other carbonaceous adsorbents according to the literature. Both π-π interactions and hydrogen bonds might be responsible for the adsorption of BPA on graphene, and the excellent adsorption capacity of graphene was due to its unique sp(2)-hybridized single-atom-layer structure. Therefore, graphene could be regarded as a promising adsorbent for BPA removal in water treatment. The kinetics and isotherm data can be well described by the pseudo-second-order kinetic model and the Langmuir isotherm, respectively. The thermodynamic studies indicated that the adsorption reaction was a spontaneous and exothermic process. Besides, the presence of NaCl in the solution could facilitate the adsorption process, whereas the alkaline pH range and higher temperature of the solution were unfavorable.  相似文献   

11.
刚果红和结晶紫在锯末上的吸附性能研究   总被引:16,自引:0,他引:16  
采用静态吸附法研究了刚果红和结晶紫在锯末上的吸附特性。结果表明,锯末是具有高脱色率的廉价吸附剂,最大脱色率可达96%。在pH4~10范围内,酸度对结晶紫的吸附影响较小,随着pH值增大,脱色率从96.6%缓慢降至91.1%。pH值对刚果红吸附影响较大,pH从4增大到7,脱色率迅速从22.5%增加至96.0%,然后,随pH值升高脱色率缓慢下降至91.4%。两种染料在锯末上的吸附等温线均较好的符合Freundlich方程,吸附动力学可以用拟二级动力学模型描述。计算了相应的吸附等温线参数和吸附动力学参数。  相似文献   

12.
Waste material (carbon slurry), from fuel oil-based generators, was used as adsorbent for the removal of two reactive dyes from synthetic textile wastewater. The study describes the results of batch experiments on removal of Vertigo Blue 49 and Orange DNA13 from synthetic textile wastewater onto activated carbon slurry. The utility of waste material in adsorbing reactive dyes from aqueous solutions has been studied as a function of contact time, temperature, pH, and initial dye concentrations by batch experiments. pH 7.0 was found suitable for maximum removal of Vertigo Blue 49 and Orange DNA13. Dye adsorption capacities of carbon slurry for the Vertigo Blue 49 and the Orange DNA13 were 11.57 and 4.54 mg g(-1) adsorbent, respectively. The adsorption isotherms for both dyes were better described by the Langmuir isotherm. Thermodynamic treatment of adsorption data showed an exothermic nature of adsorption with both dyes. The dye uptake process was found to follow second-order kinetics.  相似文献   

13.
Chemically synthesized conducting polyaniline (PANI) was investigated as adsorbent for its possible application in the removal of organic dyes, such as methylene blue (MB) and procion red (PR) from their aqueous solution. PANI adsorbent behaves as a charged surface upon post‐synthesis treatment of the polymer with acid and base. The adsorbent thus treated shows a high selectivity for the removal of dyes in the adsorption process. The Langmuir adsorption isotherm was used to represent the experimental adsorption data. The cationic dye, MB can be preferentially removed by the base‐treated PANI while the anionic dye, PR is predominately removed by the acid‐treated one. These observations were further evidenced from the measurements of molar conductance and pH of the dye solutions employed for adsorption. The finding can be explained considering the electrostatic nature of adsorption coupled with the morphology of the PANI surface thus treated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrogel is used as an adsorbent for the removal of dyes and heavy metals in waste water. In this work, different methods of synthesising novel hydrogels from liquid natural rubber (LNR) were investigated. The two different methods were ultrasonic-assisted polymerisation and heating under reflux. Through graft modification, LNR had initially combined with maleic anhydride (MaH) using benzoyl peroxide (BPO) as a radical initiator. After grafting, acrylic acid (AA) was crosslinked onto LNR-g-MaH using N,N-methylenebisacrylamide (MBA) and potassium persulfate (KPS) as a crosslinker and initiator, respectively. The best method between the two different techniques was identified via a five-level-two-factor response surface methodology (RSM). Higher adsorption percentage (93.34%) was observed in the ultrasonic technique. Meanwhile, the effects of adsorbent mass, dye concentration, pH solution and ionic strength were also investigated and results showed that different conditions were found to give different MG dye adsorption rates. The adsorption of MG dyes on hydrogel is dependent on pH and ionic strength solution. This action indicates an ion exchange mechanism. From an isotherm study, it was found that the Freundlich isotherm best fitted the adsorption of MG dyes. Furthermore, the adsorption kinetic data followed the pseudo-second order kinetic model and the reusability of hydrogel was also investigated.  相似文献   

15.
This study demonstrates the adsorption experiments of toxic dyes malachite green (MG) and Rhodamine B (RB) on Fe3O4-loaded activated carbon (AC). AC, which is known to be a high-capacity adsorbent, was aimed to be easily separated from aqueous media by loading it with Fe3O4. Fe3O4-loaded AC was prepared by the coprecipitation method and named magnetic activated carbon (M-AC), and the produced M-AC was characterized by x-ray diffraction (XRD), thermogravimetric analysis (TGA), and pHpzc analyses. MG and RB adsorption by the M-AC was performed separately by batch technique and the effects of adsorbent amount, solution pH, and initial dye concentration on the adsorption were explored. Maximum removal efficiencies were found to be 96.11% for MG and 98.54% for RB, and the Langmuir isotherm model was the most fitted isotherm model for the adsorption. The kinetic and thermodynamic studies showed that the adsorption proceeded via the pseudo-second-order kinetic model and endothermic in-nature for both dyes.  相似文献   

16.
A simple and rapid capillary electrophoretic method with UV detection (CE-UV) has been developed for the identification of five natural dyes namely, carmine, indigo, saffron, gamboge and Rubia tinctoria root. The separation was performed in a fused-silica capillary of 64.5 cm length and 50 microm id. The running buffer was 40 mM sodium tetraborate buffer solution (pH 9.25). The applied potential was 30 kV, the temperature was 25 degrees C and detections were performed at 196, 232, 252, 300 and 356 nm. The injections were under pressure of 50 mbar during 13 s. The method was applied to the identification of carminic acid, gambogic acid, crocetin, indigotin, alizarin and purpurin in the collection of drawings and maps at the Royal Chancellery Archives in Granada (Spain). The method was validated by using HPLC as a reference method.  相似文献   

17.
The purpose of this study was to compare the adsorption behavior of cationic and anionic dyes onto a hexagonal boron nitride (hBN) nanostructure that was rich in a negative charge. Herein, the hBN nanostructure was synthesized using boric acid as a precursor material. The characteristic peaks of the hBN nanostructure were performed using Fourier transform infrared (FT-IR) and Raman spectroscopies. The morphology and the particle size of hBN nanostructure were determined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). During the studies, various essential adsorption parameters were investigated, such as the initial dye concentration, pH of the dye solution, adsorbent dose, and contact time. Under optimal conditions, the removal of 42.6% Metanil yellow (MY) and 90% Victoria blue B (VBB) from aqueous solution was performed using a 10-mg hBN nanostructure. Furthermore, the equilibrium studies showed that the Freundlich isotherm model fitted well for the removal of MY. However, the Langmuir isotherm model fitted well for the removal of VBB. Moreover, according to the results obtained from the kinetic studies, while the first-order kinetic model was suited for the adsorption of the MY, the second-order kinetic model was found to well fit for the adsorption of VBB.  相似文献   

18.
The developing countries are suffering from the toxicity of different industrial effluents, especially dyes that contaminate water systems. This study successfully explained the preparation and characterization of nano bentonite to extract Direct Yellow Fifty (DY50). Direct Yellow 50 is an organic contaminant that may affect the quality of water. The characterization of prepared nanoparticles was done using Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR). The impact of different operating conditions was studied using different pH, dose, temperature, contact time, and initial DY50 concentrations. The obtained results indicated that nano bentonite could adsorb about 94 % at initial concentrations of 40 mg/L, respectively. The optimum removal conditions were observed at an acidic pH (pH 3) using a sorbent material dosage of 0.05 g for 4 h at 30 °C. The adsorption isotherm, kinetic analysis, and thermodynamic behavior were studied using linear equation form, and the adjusted R2 was compared to detect the preferred models. The adsorption behavior pseudo-second order kinetics, and fitted Langmuir isotherm model, respectively, showed the chemisorption interactions between adsorbed and sorbed molecules. Thermodynamic behavior indicated that the reaction was exothermic. Finally, this study strongly recommended using nano bentonite for DY50 removal from an aqueous solution.  相似文献   

19.
Pollution caused by organic dyes is of serious environmental and health concern to the population. Dyes are widely used in textile coloring applications. In the present work, cotton textile was coated with a conducting polymer, polypyrrole (PPy), in situ during the oxidative polymerization of pyrrole. The resulting materials were utilized as easily separated and recyclable adsorbent for the removal of methylene blue (MB) as a model of cationic dyes in alkaline solutions. It showed also some affinity to remove Acid Green 25 as an anionic dye in acidic medium. The adsorption was assessed by monitoring the decrease in dye concentration by UV–Visible absorption spectroscopy. The influence of various parameters such as initial dye concentration, contact time, pH, temperature, and adsorbent dose on the adsorption process was studied. The pseudo-second-order kinetic model and Freundlich isotherm model were found to describe the adsorption process. The thermodynamic study revealed that the adsorption of MB by PPy was feasible, spontaneous, and exothermic process. Investigation of the substrate regeneration revealed that PPy deposited on cotton textile can be reused for dye adsorption several times with good efficiency and it allows for the recovery of MB for recycling purposes.  相似文献   

20.
The potential of using rice straw fly ash (RSFA) as low-cost adsorbents for the removal of hazardous azorhodanine (AR) dye from aqueous solution was investigated. The effects of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage, and temperature were investigated, and optimal experimental conditions were ascertained: 0.05 g for initial dye concentration of 20–100 mg/L at pH 2. The experimental equilibrium data were tested by the isotherm models, namely the Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic models, pseudo-first-order and pseudo-second-order, were employed to analyze the kinetic data. The activation energy of adsorption was also evaluated and found to be +10.89 kJ.mol?1, indicating that the adsorption is physisorption. Various thermodynamic parameters, such as Gibbs free energy, entropy, and enthalpy of the ongoing adsorption process, have been calculated and found to be spontaneous and exothermic, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号