首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
A size-dependent plate model is developed to investigate the elastic responses of the multilayered two-dimensional quasicrystal nanoplates based on the nonlocal strain gradient theory for the first time. A nonlocal stress field parameter and a length scale parameter are taken into account in the new model to capture both stiffness-softening and stiffness-hardening size effects. The exact solution for a single-layer two-dimensional quasicrystal simply supported nanoplate is derived by utilizing the pseudo-Stroh formalism in conjunction with the nonlocal strain gradient theory. Afterward, a dual variable and position method is used to deal with the multilayered case. Numerical examples are presented to study the dependence of size-dependent effect on nanoplate length and the influences of scale parameters on the quasicrystal nanoplate subjected to a z-direction mechanical load on its top surface. The proposed model should be useful to verify various nanoplate theories and other numerical methods.  相似文献   

2.
以纳米机器人等智能器件中的功能梯度纳米板结构为研究对象,基于非局部应变梯度理论,研究了其弯曲和屈曲问题.推导了一般情况下的功能梯度纳米板运动方程,弯曲和屈曲作为其特例可简化而成.分析了非局部尺度参数、材料特征尺度参数、梯度指数、纳米板尺寸等对弯曲挠度和临界屈曲载荷的影响.结果表明:不同高阶连续介质力学理论下的最大挠度都...  相似文献   

3.
This study investigates the influence of surface effect on the nonlinear behavior of an electrostatically actuated circular nanoplate. The Casimir force, surface effects, and the electrostatic force are modelled. In performing the analysis, the nonlinear governing equation of a circular nanoplate is solved using a hybrid computational scheme combining a differential transformation and finite differences. The method is used to model systems found in previous literature using different methods, producing consistent results, thus verifying that it is suitable for treatment of the nonlinear electrostatic coupling phenomenon. The obtained results from numerical methods demonstrated that the relationship between the thickness, radius, and gap size of a circular nanoplate, and its pull-in voltage, is scale-dependent. The model exhibits size-dependent behavior, showing that surface effects significantly influence the dynamic response of circular nanoplate actuators. Moreover, the influence of surface stress on the pull-in voltage of circular nanoplate is found to be more significant than the influence of surface elastic modulus. Finally, the effects of actuation voltage, excitation frequency, and surface effects on the dynamic behavior of the nanoplate are examined through use of phase portraits. Overall, the results show that the using hybrid method here presented is a suitable technique for analyzing nonlinear behavior characteristic of circular nanoplates.  相似文献   

4.
This paper addresses a 3D elasticity analytical solution for static deformation of a simply-supported rectangular micro/nanoplate made of both homogeneous and functionally graded (FG) material within the framework of modified couple stress theory. The plate is assumed to be resting on a Winkler–Pasternak elastic foundation, and its modulus of elasticity is assumed to vary exponentially along thickness. By expanding displacement components in double Fourier series along in-plane coordinates and imposing relevant boundary conditions, the boundary value problem (BVP) of plate system, including its governing partial differential equations (PDEs) of equilibrium are reduced to BVP consisting only ordinary ones (ODEs). Parametric studies are conducted among displacement and stress components developed in the plate and FG material gradient index, length scale parameter, and foundation stiffnesses. From the numerical results, it is concluded that the out-of-plane shear stresses are not necessarily zero at the top and bottom surfaces of plate. The results of this investigation may serve as a benchmark to verify further bending analyses of either homogeneous or FG micro/nanoplates on elastic foundation.  相似文献   

5.
In this paper, quasi-static fatigue crack growth simulations of homogeneous and bi-material interfacial cracks have been performed using element free Galerkin method (EFGM) under mechanical as well as thermo-elastic load. The thermo-elastic fracture problem is decoupled into thermal and elastic problems. The temperature distribution obtained by solving heat conduction equation is used as input in the elastic problem to get the displacement and stress fields. Discontinuities in the temperature and displacement fields are captured by extrinsic partition of unity enrichment technique. The values of stress intensity factors have been extracted from the EFGM solution by domain based interaction integral approach. The standard Paris fatigue crack growth law has been implemented for the life estimation of various model problems. The results obtained by EFGM under mechanical and thermo-elastic loads were compared with those obtained by FEM using remeshing approach.  相似文献   

6.
This paper aims to investigate the coupling influences of thermal loading and surface effects on pull-in instability of electrically actuated circular nanoplate based on Eringen's nonlocal elasticity theory, where the electrostatic force and thermally corrected Casimir force are considered. By utilizing the Kirchhoff plate theory, the nonlinear equilibrium equation of axisymmetric circular nanoplate with variable coefficients and clamped boundary conditions is derived and analytically solved. The results describe the influences of surface effect and thermal loading on pull-in displacements and pull-in voltages of nanoplate under thermal corrected Casimir force. It is seen that the surface effect becomes significant at the pull-in state with the decrease of nanoplate thicknesses, and the residual surface tension exerts a greater influence on the pull-in behavior compared to the surface elastic modulus. In addition, it is found that temperature change plays a great role in the pull-in phenomenon; when the temperature change grows, the circular nanoplate without applied voltage is also led to collapse.  相似文献   

7.
从边界积分方程出发,导出了二维裂纹体热传导问题及热弹性问题的积分方程组,继而使用奇异积分方程与边界元相结合的方法,为其建立了相应的数值求解方法。此外,利用奇异积分方程的主部分析法,严格地证明了裂纹尖端温度梯度场的1/√r 奇异性,并且给出了奇性温度梯度场的精确解。最后。对一些典型例子,做了数值计算。  相似文献   

8.
This paper addresses the elastic buckling and vibration characteristics of isotropic and orthotropic nanoplates using finite strip method. In order to consider small scale effect, Eringen’s nonlocal continuum elasticity is employed. The governing nanoplate equations are derived using the principle of virtual work while B3-spline finite strip method is applied to the buckling and vibration analyses. The buckling load and vibration frequency of graphene sheets, which are subjected to biaxial compression and pure shear loading, are determined whilst the effects of different parameters such as sheet size, nonlocal parameter, aspect ratio and boundary conditions are investigated. The interaction curves of the critical biaxial compression loading as well as the interaction curves of the critical uniaxial compression and shear loading are also obtained. It is shown that small scale effect plays considerable role in the analysis of small sizes plates.  相似文献   

9.
对轴对称正交各向异性功能梯度层合圆板稳态热传导问题进行精确分析.假设材料热传导率沿板厚方向按指数函数形式梯度分布,从正交各向异性功能梯度圆板稳态热传导的基本方程出发,利用分离变量法,获得了在上、下表面作用任意热分布情况下的精确解.通过数值算例的分析,指出材料性质的梯度变化、板厚边界条件等分析了对温度场分布的影响.所获得的精确结果,可以作为评价其它近似方法的标准解答.  相似文献   

10.
A two-dimensional steady-sate analysis of semi-infinite brittlecrack growth at a constant subcritical rate in an unboundedfully-coupled thermoelastic solid under mixed-mode thermomechanicalloading is made. The loading consists of normal and shear tractionsand heat fluxes applied as point sources (line loads in theout-of-plane direction). A related problem is solved exactly in an integral transformspace, and robust asymptotic forms used to reduce the originalproblem to a set of integral equations. The equations are partiallycoupled and exhibit operators of both Cauchy and Abel types,yet can be solved analytically. The temperature change field at a distance from the moving crackedge is then constructed, and its dominant term is found tobe controlled by the imposed heat fluxes. The role of this termis, indeed, enhanced if the heat fluxes serve to render thecrack as a net heat source/sink for the solid, as opposed tobeing a transmitter of heat across its plane. More generally,the influence of the thermoelastic coupling on this field, aswell as other functions, is found to increase with crack speed.  相似文献   

11.
Orthogonality relations for homogeneous waves in layered plates are obtained, and they are generalized to the case of a contact with fluid layers. For layers of infinite thickness, it is shown that the homogeneous waves of the discrete spectrum are orthogonal to each other and to the waves of the continuous spectrum. For finite-size sources, exact formulas are derived for the coefficients multiplying the modes. Based on the orthogonality relations, a nonlocal radiation principle is proposed such that the infinite domain in the numerical solution of diffraction problems for layered plates can be replaced by a virtual cylinder.  相似文献   

12.
In the present study by considering the small-scale effects, the dynamic instability of fully clamped and simply supported nanoplates is studied in the attendance of electrostatic, Casimir as well as thermal forces. To this end, by applying the nonlocal elasticity theory of Eringen along with the classical plate theory, the dynamic equilibrium equation of nanoplates is obtained by incorporating the in-plane thermal and transverse intermolecular distributed loads. The solution of the obtained nonlinear governing equation is done using the Galerkin method and the dynamic pull-in instability voltage of the nanoplates is compared with the available experimental results. Finally, the simultaneous effects of thermal force as well as nonlocal parameter on the dynamic response of nanoplates are examined in the presence of Casimir force in detail.  相似文献   

13.
研究了多层介质中的热弹性位移和应力.多层介质具有不同厚度,各层又具有不同的弹性性质,最上层表面上作用热荷载和集中荷载.假设各层分别是均匀、各向同性弹性材料,各层相关的位移分量是轴对称的,对称轴为各层表面的垂线.因此,各层应力函数满足无体力的单一方程.利用积分变换法求解了该方程,对由任意多个层数构造的多层介质,给出了其相应层数基础热弹性位移和应力的解析表达式.并对3层介质和4层介质时的数值结果进行了比较.  相似文献   

14.
The Parabolic partial differential equations (PDEs) with nonlocal boundary conditions model various physical phenomena, e.g. chemical diffusion, thermoelasticity, heat conduction process, control theory and medicine science. This paper deals with the smoothing of the Crank-Nicolson numerical scheme for two-dimensional parabolic PDEs with nonlocal boundary conditions. We use the numerical scheme based on Padé approximations of the matrix exponential. The graphs of numerical results demonstrate the successful smoothing of the Crank-Nicolson numerical scheme.  相似文献   

15.
发展了八次对称二维准晶材料的断裂理论.应用Fourier变换与对偶积分方程理论,得到了八次对称二维准晶材料Ⅱ型Griffith裂纹的精确解析解,并由此确定了应力强度因子和应变能释放率,讨论了与相位子场有关结果的物理意义以及晶体与准晶体裂纹问题力学行为的差别,这些为研究此新固体材料的变形和断裂提供了重要的信息.  相似文献   

16.
We propose a model that makes it possible to determine the complex of thermophysical characteristics of a union of homogeneous bodies based on the solution of the nonstationary two-dimensional problem of thermal conductivity for a semibounded body with a foreign platelike inclusion perpendicular to the boundary surface; the body is subject to rapid heating by heat fluxes along thin strips.Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 36, 1992, pp. 63–66.  相似文献   

17.
This paper develops a new methodology for the solution of nonlinear diffusion equations. The solution technique is based on integral transforms and leads to exact numerical results. We apply the formal methodology to the problem of one-dimensional transient heat conduction. A new form of the heat equation is developed using a generalized expression for temperature-dependent thermal conductivity, based on a power-series expansion, for the three standard orthogonal coordinate systems. The resulting form of the heat equation suggests that the finite integral transform technique may reduce the dimensionality of the heat equation prior to the initiation of any numerical procedure. An example in a slab with linearly varying thermal conductivity is shown to produce exact results for the temperature distribution.  相似文献   

18.
This paper presents the theoretical analysis of a multilayered magneto-electro-thermoelastic hollow sphere under unsteady and uniform surface heating. We obtain the exact solution of the transient thermal stress problem of the multilayered magneto-electro-thermoelastic hollow sphere in the spherically symmetric state. As an illustration, we perform numerical calculations of a two-layered composite hollow sphere made of piezoelectric and magnetostrictive materials and investigate the numerical results for temperature change, displacement, stress, and electric and magnetic potential distributions in the transient state are shown in figures.  相似文献   

19.
The article investigates the reconstruction of the internal boundary of a two-dimensional region in the two-dimensional initial–boundary-value problem for the homogeneous heat equation. The initial values for the determination of the internal boundary are provided by a boundary condition of second kind on the external boundary and the solution of the initial–boundary-value problem at finitely many points inside the region. The inverse problem is reduced to solving a system of integral equations nonlinear in the function describing the sought boundary. An iterative numerical procedure is proposed involving linearization of integral equations.  相似文献   

20.
The inverse problem of determining the temperature and the time-dependent thermal diffusivity from various additional nonlocal information is investigated. These nonlocal conditions can come in the form of an internal or boundary energy, or, in the one-dimensional case, as a difference boundary temperature or heat flux so as to ensure the uniqueness of solution for the heat conduction equation with unknown thermal diffusivity coefficient. The Ritz-Galerkin method with satisfier function is employed to solve the inverse problems numerically. Numerical results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号